A Two-Player Singleton Stochastic Congestion Game with Asymmetric Information

March 17, 2025

Congestion Games

March 17, 2025

1/35

Introduction

- 2 Information Asymmetry
- 3 Worst-Case Expected Reward
- 4 Simulations

5 Conclusions

< ∃→

H N

< A

Outline

Introduction

- 2 Information Asymmetry
- 3 Worst-Case Expected Reward
- 4 Simulations
- 5 Conclusions

Congestion Games

- A Congestion Game¹ is a tuple $(\mathcal{N}, \mathcal{R}, \mathcal{A}, \textbf{\textit{r}}),$ where,
 - $\mathcal{N} = \{P_1, P_2, ..., P_n\}$ is a set of *n* players
 - $\mathcal{R} = \{R_1, R_2, ..., R_m\}$ is a set of *m* resources
 - $\mathbf{r} = (r_1, ..., r_m), r_k : \mathbb{N}_0 \mapsto \mathbb{R}$ is the reward function of resource k.
 - Each player chooses a subset of the resources $a_i \in A_i \subset 2^{\mathcal{R}} \setminus \{\emptyset\}$.

•
$$\mathcal{A} = \mathcal{A}_1 \times \dots \times \mathcal{A}_n$$

¹Robert W. Rosenthal. "A class of games possessing pure-strategy Nash equilibria". In: International Journal of Game Theory (1973).

Congestion Games

Congestion Games Continued

- Action profile $a = (a_1, a_2, ..., a_n)$
- Count function: # : R × A → N, #(k, a) = number of players choosing k under the action profile a.
- Reward functions rk are typically non-decreasing
- $r_k(\#(k, a))$ is the per player reward of a resource.
- The utility of player *i* is,

$$u_i(a) = \sum_{k \in a_i} r_k(\#(k, a))$$
(1)

$$u_1(a) = r_1\big(\#(1,a)\big) + r_2\big(\#(2,a)\big) = r_1(1) + r_2(3)$$

Congestion Games Properties

- Congestion games fall under potential games²
- There are many variants of the game,
 - Weighted Congestion Games³
 - Singleton Congestion Games⁴
 - Resource failure⁵
 - Time varying Dynamic/Stochastic settings⁶

²Dov Monderer and Lloyd S. Shapley. "Potential Games". In: *Games and Economic Behavior* (1996).

³Kshipra Bhawalkar, Martin Gairing, and Tim Roughgarden. "Weighted Congestion Games: Price of Anarchy, Universal Worst-Case Examples, and Tightness". In: *Lecture Notes in Computer Science*. 2010.

⁴Dimitris Fotakis et al. "The structure and complexity of Nash equilibria for a selfish routing game". In: *Theoretical Computer Science* (2009).

⁵Jinhuan Wang, Kaichen Jiang, and Yuhu Wu. "On congestion games with player-specific costs and resource failures". In: *Automatica* (2022).

⁶Martin Hoefer et al. "Competitive routing over time". In: *Theoretical Computer Science* (2011); Haris Angelidakis, Dimitris Fotakis, and Thanasis Lianeas. "Stochastic Congestion Games with Risk-Averse Players". In: *Lecture Notes in Computer Science*. 2013.

Applications of Congestion Games

- The Applications include,
 - Service chain composition⁷
 - Network design⁸
 - Load balancing⁹
 - Spectrum sharing¹⁰
 - Radio access selection¹¹
 - Modelling the Migration of species¹²

⁷Shuting Le, Yuhu Wu, and Mitsuru Toyoda. "A Congestion Game Framework for Service Chain Composition in NFV with Function Benefit". In: *Inf. Sci.* (2020).

⁸E. Anshelevich et al. "The price of stability for network design with fair cost allocation". In: *45th Annual IEEE Symposium on Foundations of Computer Science*. 2004.

⁹Ioannis Caragiannis et al. "Tight Bounds for Selfish and Greedy Load Balancing". In: *Algorithmica* (2006).

¹⁰Sahand Ahmad et al. Spectrum Sharing as Network Congestion Games. 2009.

¹¹Marc Ibrahim, Kinda Khawam, and Samir Tohme. "Congestion Games for Distributed Radio Access Selection in Broadband Networks". In: *2010 IEEE Global*

Telecommunications Conference GLOBECOM 2010. 2010.

12 Thomas Quint and Martin Shubik. "A model of migration". In (1994).

What happens when the players,

- have asymmetric information?
- do not trust each other?

ъ.

Model

- Two players A and B and *n* resources.
- Each player can choose exactly one resource (Singleton).
- Each resource *i* has a Reward random variable *W_i*.
 - If both players choose the same resource *i* the utility of each player is W_i/2.
 - If players choose different resources they get the full reward of the resource.
- *W_i* are assumed to be independent.
- Reward of player A is,

$$R_{A} = \sum_{k=1}^{n} W_{k} \mathbb{1}_{(\alpha^{A}=k)} \left(1 - \frac{\mathbb{1}_{(\alpha^{B}=k)}}{2}\right)$$

$$\alpha^{X} = \text{ resource choosen by X}$$
(2)

Introduction

Worst-Case Expected Reward

4 Simulations

5 Conclusions

Information Asymmetry

- Both players know the distribution $\boldsymbol{W} = (W_1, W_2, ..., W_n)$
- Each player observes the realization of the reward random variable of some of the resources.

•
$$\boldsymbol{W} = (\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}, \boldsymbol{V})$$

- $\boldsymbol{X} \in \mathbb{R}^{a}$ Only A
- $\mathbf{Y} \in \mathbb{R}^{b-a}$ Only B
- $\boldsymbol{Z} \in \mathbb{R}^{c-b}$ Both A and B
- $V \in \mathbb{R}^{n-c}$ None
- 0 ≤ a ≤ b ≤ c ≤ n
- We will say **A** sees the resource *i* for $1 \le i \le a$ or $b + 1 \le i \le c$.

Expected Reward

- In our analysis we fix Z. Let $E_k = \mathbb{E}\{W_k | Z\}$
- The expected reward of player A can be simplified as,

$$\mathbb{E}\{R_{A}|\boldsymbol{Z}\} = \underbrace{\sum_{k=1}^{a} q_{k}^{A} + \sum_{k=a+1}^{n} E_{k}p_{k}^{A}}_{\hat{A} \text{ (Depends only on A's strategy)}} - \underbrace{\frac{1}{2} \left(\sum_{k=1}^{a} q_{k}^{A}p_{k}^{B} + \sum_{k=a+1}^{b} p_{k}^{A}q_{k}^{B} + \sum_{k=b+1}^{n} E_{k}p_{k}^{A}p_{k}^{B} \right)}_{\hat{C}} \quad (3)$$

● For 1 ≤ k ≤ n,

$$p_{k}^{A} = \mathbb{E}\{\mathbb{1}_{(\alpha^{A}=k)} | \boldsymbol{Z}\}, \quad p_{k}^{B} = \mathbb{E}\{\mathbb{1}_{(\alpha^{B}=k)} | \boldsymbol{Z}\}$$
$$q_{k}^{A} = \mathbb{E}\{\boldsymbol{W}_{k}\mathbb{1}_{(\alpha^{A}=k)} | \boldsymbol{Z}\}, \quad \boldsymbol{q}_{k}^{B} = \mathbb{E}\{\boldsymbol{W}_{k}\mathbb{1}_{(\alpha^{B}=k)} | \boldsymbol{Z}\}$$
(4)

A D M A A A M M

• Similarly for player B, we have,

$$\mathbb{E}\{R_{B}|\mathbf{Z}\} = \underbrace{\sum_{k=1}^{a} E_{k} p_{k}^{B} + \sum_{k=a+1}^{b} q_{k}^{B} + \sum_{k=b+1}^{n} E_{k} p_{k}^{B}}_{\hat{B}} - \underbrace{\frac{1}{2} \left(\sum_{k=1}^{a} q_{k}^{A} p_{k}^{B} + \sum_{k=a+1}^{b} p_{k}^{A} q_{k}^{B} + \sum_{k=b+1}^{n} E_{k} p_{k}^{A} p_{k}^{B}\right)}_{\hat{C}}$$
(5)

크

3 + 4 = +

- Finding the best response of a player for a fixed strategy of the opponent
- Finding a global potential function
- Running the iterated best response algorithm.

Best Response

Recall

• Recall for $1 \leq k \leq n$,

$$\boldsymbol{\rho}_{k}^{B} = \mathbb{E}\{\mathbb{1}_{(\alpha^{B}=k)} | \boldsymbol{Z}\} \quad \boldsymbol{q}_{k}^{B} = \mathbb{E}\{\boldsymbol{W}_{k}\mathbb{1}_{(\alpha^{B}=k)} | \boldsymbol{Z}\}$$
(6)

• For a fixed strategy of B, p_k^B and q_k^B will be fixed.

• The best response of A for a fixed strategy of B is given by $\alpha^{A} = \arg \max_{1 \le k \le n} A_{k}$, where A_{k} is given by,

$$A_{k} = \begin{cases} W_{k} \left(1 - \frac{1}{2} p_{k}^{B}\right) & \text{if } 1 \leq k \leq a \\ E_{k} - \frac{1}{2} q_{k}^{B} & \text{if } a + 1 \leq k \leq b \\ E_{k} \left(1 - \frac{1}{2} p_{k}^{B}\right) & \text{if } b + 1 \leq k \leq n \end{cases}$$
(7)

The best response of B can be calculated similarly

• A potential function f has the following properties,

- f Depends on the policies of A and B
- When A changes strategy while B stays in the strategy the change of E{R_A|Z} is equal to the change of f
- Same is true when B changes strategy while A stays

Potential function has to be global. Not player specific!!!

Potential Function for our Game

Recall

$$\mathbb{E}\{m{R}_B|m{Z}\}=\hat{B}-\hat{C}$$
 $\mathbb{E}\{m{R}_A|m{Z}\}=\hat{A}-\hat{C}$

- Â depends only on A's strategy
- It turns out that our game has an exact potential function,
- The potential function

$$H(A,B) = \hat{A} + \hat{B} - \hat{C}$$

$$= \mathbb{E}\{R_A|Z\} +$$

Does not change when A individually changes strategy

(8)

- Players A and B can iteratively find the best response
- In each iteration
 - First A finds the best response while B stays in the strategy -Potential function ↑
 - Then B finds the best response while A stays in the strategy -Potential function ↑
- Potential function will be non-decreasing in each step
- Potential function is bounded.
- Convergence to ϵ -pure Nash equilibrium in at most,

$$\frac{\sum_{k=1}^{n} E_k}{\epsilon},\tag{9}$$

イロト イ押ト イヨト イヨト

iterations

Introduction

2 Information Asymmetry

3 Worst-Case Expected Reward

4 Simulations

5 Conclusions

- What happens when players,
 - Do not have information regarding opponents' strategy?
 - Do not trust each other?
- Solution: Maximizing the worst-case expected reward.

- We will focus on finding a worst-case strategy for A.
- The steps involved,
 - Fix A's strategy
 - Find the strategy of B which minimizes $\mathbb{E}\{R_A | Z\}$ for the A's fixed strategy
 - Maximize $\mathbb{E}\{R_A | \mathbf{Z}\}$ in this case.

イロト イ押ト イヨト イヨト

Worst-Case Expected Reward

- Recall, when we fix A's strategy $p_k^{A's}$ and $q_k^{A's}$ will be fixed.
- The strategy of B which minimizes $\mathbb{E}\{R_A | Z\}$ is given by,

$$\alpha^{B} = \arg \max_{1 \leqslant k \leqslant n} \mu_{k},$$

where

$$\mu_{k} = \begin{cases} q_{k}^{A} & \text{if } 1 \leq k \leq a \\ W_{k} p_{k}^{A} & \text{if } a + 1 \leq k \leq b \\ E_{k} p_{k}^{A} & \text{if } b + 1 \leq k \leq n \end{cases}$$
(10)

The worst case expected reward of A is given by,

$$R_{\text{worst}} = \sum_{k=1}^{a} q_{k}^{A} + \sum_{k=a+1}^{n} E_{k} p_{k}^{A} - \frac{1}{2} \sum_{k=1}^{n} \mathbb{E}\{\max\{\mu_{k}\}_{k=1}^{n} | \mathbf{Z}\}$$
(11)

Maximizing the Worst-Case Expected Reward

Problem

$$(P1:) \text{ maximize } \sum_{k=1}^{a} q_k^A + \sum_{k=a+1}^{n} E_k p_k^A - \frac{1}{2} \sum_{k=1}^{n} \mathbb{E}\{\max\{\mu_k\}_{k=1}^{n} | \mathbf{Z}\}$$

subject to $p_k^A = \mathbb{E}\{\mathbb{1}_{(\alpha^A=k)} | \mathbf{Z}\}$ for $1 \le k \le n$,
 $q_k^A = \mathbb{E}\{W_k \mathbb{1}_{(\alpha^A=k)} | \mathbf{Z}\}$ for for $1 \le k \le n$,
 $\mu_k = \begin{cases} q_k^A & \text{if } 1 \le k \le a \\ W_k p_k^A & \text{if } a+1 \le k \le b \\ E_k p_k^A & \text{if } b+1 \le k \le n \end{cases}$

- Two approaches,
 - Direct-approach
 - Drift-plus penalty-based approach

∃ ► < ∃ ►</p>

Direct Approach

Recall

$$(P1:) \text{ maximize } \sum_{k=1}^{a} q_k^A + \sum_{k=a+1}^{n} E_k p_k^A - \frac{1}{2} \sum_{k=1}^{n} \mathbb{E}\{\max\{\mu_k\}_{k=1}^{n} | \mathbf{Z}\}$$

subject to $p_k^A = \mathbb{E}\{\mathbb{1}_{(\alpha^A = k)} | \mathbf{Z}\}$ for $1 \le k \le n$,
 $q_k^A = \mathbb{E}\{W_k \mathbb{1}_{(\alpha^A = k)} | \mathbf{Z}\}$ for for $1 \le k \le n$,
 $\mu_k = \begin{cases} q_k^A & \text{if } 1 \le k \le a \\ W_k p_k^A & \text{if } a+1 \le k \le b \\ E_k p_k^A & \text{if } b+1 \le k \le n \end{cases}$

Finding the region G ⊂ ℝ²ⁿ achieved by (q^A₁,...,q^A_n, p^A₁,..p^A_n)
Solving (P1) as a problem in ℝ²ⁿ, for (q₁,...,q_n, p₁,...p_n) ∈ G
Finding a strategy satisfying the found optimal (q^{*}₁,...,q^{*}_n, p^{*}₁,...p^{*}_n).
p^{*}_k = ℝ{1_(α*=k)|Z} q^{*}_k = ℝ{W_k1_(α*=k)|Z} ∈ [12)_α

March 17, 2025

24/35

Recall the steps:

- Finding the region $\mathcal{G} \subset \mathbb{R}^{2n}$ achieved by $(q_1^A, ..., q_n^A, p_1^A, ..., p_n^A)$
- 2 Solving (P1) as a problem in \mathbb{R}^{2n} , for $(q_1, ..., q_n, p_1, ..., p_n) \in \mathcal{G}$
- Sinding a strategy satisfying the found optimal $(q_1^*, ..., q_n^*, p_1^*, ..., p_n^*)$.

$$\boldsymbol{p}_{k}^{*} = \mathbb{E}\{\mathbb{1}_{(\alpha^{*}=k)} | \boldsymbol{Z}\} \quad \boldsymbol{q}_{k}^{*} = \mathbb{E}\{\boldsymbol{W}_{k}\mathbb{1}_{(\alpha^{*}=k)} | \boldsymbol{Z}\}$$
(13)

- The first step can be done easily when a = 1¹³.
- For *a* = 1, the second step can be done using the Stochastic sub-gradient method.
- Third step finds a mixture of **threshold strategies** for a = 1.

$$\mathcal{G} = \{(q, \boldsymbol{p}) | \rho_k \in [0, 1], \sum_{k=1}^n \rho_k = 1, q \in \mathbb{R}, \mathbb{E}\{W_1 | F_{W_1}(W_1) \le \rho_1^A\} \rho_1 \le q \le \mathbb{E}\{W_1 | F_{W_1}(W_1) \ge 1 - \rho_1\} \rho_1\}$$
(14)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• A threshold strategy is defined by $\boldsymbol{C} \in \mathbb{R}^n$ and is given by,

$$\alpha^{A} = \arg \max_{1 \le k \le n} \{ \{ C_{j} W_{j} \}_{j=1}^{a}, \{ C_{j} \}_{j=a+1}^{n} \},$$
(15)

- It turns out that the direct method finds a mixture of threshold strategies when a = 1.
- Can we find such a mixture for the general case?

- Idea is to find *T* threshold strategies *C*(*t*) for 1 ≤ *t* ≤ *T*, which can be used in a mixture.
- Recall that

$$\alpha^{A}(t) = \arg \max_{1 \le k \le n} \{ \{ C_{j}(t) W_{j} \}_{j=1}^{a}, \{ C_{j}(t) \}_{j=a+1}^{n} \}$$
(16)

- Can be done using treating $C_i(t)$'s as virtual queues.
- Can be used for the general case
- Slower compared to the direct method

Algorithm

• Choose a parameter V and initialize $\boldsymbol{C}(0) = 0$

For each iteration
$$t \in \{0, 1, 2, ..., T - 1\}$$

Sample $X(t)$
(P2): Choose $\gamma(t)$ to solve,
 $(P2): \underset{\gamma(t)}{\text{maximize}} Vf(\gamma(t)) - \sum_{j=1}^{n} C_{j}(t)\gamma_{j}(t)$ (17a)
subject to $\gamma(t) \in \left(\prod_{j=1}^{a} [0, E_{j}]\right) \times [0, 1]^{n-a}$ (17b)
where $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is given by,

where
$$f_a: \mathbb{R}^n \mapsto \mathbb{R}$$
 is given by,

$$f(\boldsymbol{x}) = \sum_{j=1}^n x_j + \sum_{j=a+1}^n E_j x_j - \frac{1}{2} \mathbb{E}\{\max\{\boldsymbol{x}_{1:a}, \{x_j W_j\}_{j=a+1}^b, \{x_j E_j\}_{j=b+1}^n\} | \boldsymbol{Z}\}$$

Choose action α^A(t) using the threshold strategy C(t).
Updates the virtual queues using,

$$C_{j}(t+1) = \max\{C_{j}(t) + \gamma_{j}(t) - X_{j}(t)\mathbb{1}_{\alpha^{A}(t)=j}, 0\}, \forall 1 \leq j \leq a,$$

$$C_{j}(t+1) = \max\{C_{j}(t) + \gamma_{j}(t) - \mathbb{1}_{\alpha^{A}(t)=j}, 0\}, \forall a + 1 \leq j \leq n.$$

$$\exists n \in \mathbb{N}$$

Recall

$$(P2): \underset{\gamma(t)}{\text{maximize}} \quad Vf(\gamma(t)) - \sum_{j=1}^{n} C_{j}(t)\gamma_{j}(t)$$
(19a)
subject to $\gamma(t) \in \left(\prod_{j=1}^{a} [0, E_{j}]\right) \times [0, 1]^{n-a}$ (19b)

- Can be solved using the stochastic subgradient method with projections onto the feasible set¹⁴
- Can be sped up in certain cases for instance when $C_j(t) \notin [Vv_j/2, Vv_j]$ where,

$$V_j = \begin{cases} 1 & \text{if } 1 \leqslant k \leqslant a \\ E_k & \text{otherwise} \end{cases}$$

14 Stephen Boyd and Almir Mutapcic. "Stochastic subgradient methods". In: Lecture

(20)

29/35

• The Expected reward of the algorithm generated by the algorithm is bounded as,

$$\mathbb{E}\{\boldsymbol{R}^{\mathsf{mixed}}|\boldsymbol{Z}\} \ge f^{\mathsf{opt}} - \frac{D}{V} - \frac{3v_{\mathsf{max}}}{2}\sqrt{\frac{2n(D+V(f^{\mathsf{max}}-f^{\mathsf{opt}}))}{T}}, \quad (21)$$

where

•
$$D = n - a + \frac{1}{2} \sum_{j=1}^{a} (E_j^2 + \mathbb{E}\{W_k(t)^2\})$$

•
$$f^{\text{opt}}$$
 is the optimal value of (P1)
• $f^{\text{max}} = \sup_{x \in \left(\prod_{j=1}^{a} [0, E_j]\right) \times [0, 1]^{n-a}} f(x)$

•
$$v_{\max} = \max\{\{v_j\}_{j=1}^n\}, \text{ where }$$

$$v_k = \begin{cases} 1 & \text{if } 1 \leqslant k \leqslant a \\ E_k & \text{otherwise} \end{cases}$$

(22)

Introduction

- 2 Information Asymmetry
- 3 Worst-Case Expected Reward
- 4 Simulations

5 Conclusions

E_1 vs $\mathbb{E}\{R_A|Z\}$

W_j are exponential, E₂ = E{W₃} = E₄ = 1 and a, b, c, n = 1, 2, 3, 4
For the first three cases B is playing the greedy strategy

Figure: The expected reward of A vs E_1

.∋...>

Introduction

- 2 Information Asymmetry
- 3 Worst-Case Expected Reward
- 4 Simulations

We have considered the Two-Player Singleton Stochastic Congestion Game with Asymmetric Information.

- Existence of an exact potential function
- An iterative best response algorithm to find the *ε*-pure Nash equilibrium
- Two algorithms to maximize the worst-case expected reward of the first player.
 - Direct method: has lower computational complexity but can only be applied in specific cases.
 - Drift-plus penalty algorithm: can be applied in the general scenario but has high computational complexity.

Thank You

O		· • • • • • • •
I ODC	idetior	n i samo
OULIC	ie suoi	i Gaines

イロト イヨト イヨト イヨト

æ