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Abstract—This paper focuses on the problem of automatic link
selection in multi-channel multiple access control using bandit
feedback. In particular, a controller assigns multiple users to
multiple channels in a time slotted system, where in each time
slot at most one user can be assigned to a given channel and
at most one channel can be assigned to a given user. Given that
user i is assigned to channel j, the transmission fails with a
fixed probability fi,j . The failure probabilities are not known
to the controller. The assignments are made dynamically using
success/failure feedback. The goal is to maximize the time average
utility, where we consider an arbitrary (possibly nonsmooth) con-
cave and entrywise nondecreasing utility function. The problem
of merely maximizing the total throughput has a solution of
always assigning the same user-channel pairs and can be unfair
to certain users, particularly when the number of channels is less
than the number of users. Instead, our scheme allows various
types of fairness, such as proportional fairness, maximizing the
minimum, or combinations of these by defining the appropriate
utility function. We propose an algorithm for this task that is
adaptive and gets within O(log(T )/T 1/3) of optimality over any
interval of T consecutive slots over which the success probabilities
do not change. This performance is improved to O(1/

√
T ) for

single-channel problems with a minimum constraint on the rate
of transmission attempts per user.

Index Terms—Multi-armed bandit learning; Proportional fair-
ness; Network utility maximization; Optimization; Stochastic
control

I. INTRODUCTION

We consider the Multiple Access Control (MAC) problem
with n users and m channels in slotted time t ∈ N. In each
time slot, a controller has to assign the users to channels such
that at most one user is assigned to a given channel and at
most one channel is assigned to a given user. The channel
assignments may fail. In particular, there exist qi,j ∈ [0, 1] for
each (i, j) ∈ {1, 2, . . . , n}×{1, 2, . . . ,m}, where in time slot
t, given that the controller decided to assign user i to channel
j, the assignment fails independently with probability 1−qi,j .
The controller does not know the probabilities qi,j . Instead,
at the end of every slot, it receives feedback on whether the
transmission for each assigned user-channel pair succeeded or
failed.

This work was supported in part by one or more of: NSF CCF-1718477,
NSF SpecEES 1824418.

Define the matrices Y (t),S(t) ∈ {0, 1}n×m and vector
X(t) ∈ {0, 1}n, where

Si,j(t) =

{
1 if link i, j is successful in time slot t
0 otherwise,

Yi,j(t) =

{
1 user i is assigned to channel j in time slot t
0 otherwise,

and Xi(t) =
∑m

j=1 Yi,j(t)Si,j(t) for all i ∈ {1, 2, . . . , n}.
Notice that Xi(t) ∈ {0, 1} denotes whether user i successfully
transmitted during time slot t. The goal is to maximize
limT→∞ ϕ(E{X(T )}) using feedback on the link failures,
where ϕ : Rn → R is a concave entrywise nondecreas-
ing utility function known to the controller and X(T ) =
1
T

∑T
t=1 X(t). 1

We also focus on establishing finite-time bounds. In particu-
lar, given a finite time horizon T ∈ N, we require the algorithm
to satisfy ϕopt − ϕ

(
E{X(T )}

)
≤ g(T ), where ϕopt is the

optimal utility of the original problem and g is a nonnegative
function such that limT→∞ g(T ) = 0. In addition, we are
looking for algorithms that are adaptive. Formally, consider a
system in which the channel success probabilities may change.
In such a system, given a T ∈ N, we require

ϕopt − ϕ

(
1

T
E

{
T+T0−1∑
t=T0

X(t)

})
≤ g(T )

for any T0 ∈ N, irrespective of the success probabilities
outside of the time frame [T0 : T0+T −1], given that success
probabilities remained constant in the frame. Here, ϕopt is the
optimal utility of the original problem that uses the constant
success probabilities in [T0 : T0+T−1] of the above scenario.
Note that g is the same function regardless of T0.

This model is applicable in a multiple access scenario where
n users are accessing m orthogonal channels [1]. Here, it
is desirable for users to be scheduled to avoid collisions.
Link failures occur when the receiver cannot decode packet
transmissions. This can occur, for example, when a fixed

1The limit is assumed to exist for simplicity of this introduction; the precise
goal is to maximize a lim infT→∞ ϕ(E{X(T )})
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transmission power is used, but channel conditions have ran-
dom and unknown fluctuations so that the received signal
strength is insufficient for decoding. Different links can have
different properties (such as different geographic distances
to the receiver), so they can also have different success
probabilities. Our model can still be applied if the channels
are non-orthogonal, such as in beyond 5G non-orthogonal
multiple access (NOMA) schemes [2]. In particular, given
that the interference on a channel due to other channels is
independent of the user-channel assignment, the probability
of a transmission failure due to unsuccessful interference
cancellation can be captured in qi,j values.

The naive approach of assigning the users with links with
the least failure probabilities leads to unfairness since, in
such a scenario, users with high link failure probabilities
will never be assigned. A common approach to solving this
problem is to maximize a utility function of the time-averaged
success. One utility function that can be used in our work
is ϕ(x) = min{x1, . . . , xn}. This is a nonsmooth utility
function that seeks to maximize the minimum time average
success rate across all users. However, if there is one user
with very low success probability, this utility function can
cause almost all the resources to be devoted to that user,
resulting in poor performance for all users. Another choice is
ϕ(x) = w1 min{x1, . . . , xn}+ w2

∑n
i=1 log(1 + βxi), where

w1, w2, β are given nonnegative weights. The logarithmic term
introduces a form of proportional fairness [3], [4]. See also
discussion of different utility functions in [3]–[7]

A. Related work

Our problem has been well studied in the full information
scenario when either the fluctuating channel conditions are
known before transmission (called opportunistic scheduling)
or when channel success probabilities are known in advance.
Opportunistic scheduling has been considered using utility
functions [8], Lyapunov drift [9], Frank-Wolfe [10]–[12],
primal-dual [13], [14], and drift-plus-penalty [15]. The case
when success probabilities are known in advance can be solved
offline as a convex optimization problem using the mirror
descent technique [16].

The problem becomes challenging when the success proba-
bilities are not known, but we only receive bandit feedback
on the successes. The problem has to be approached by
combining ideas from optimizing functions of time averages
with multi-armed bandit learning. The work on bandits with
vector rewards and concave utility functions can be adapted
for the single-channel case (m = 1) of our problem (See [17]–
[19]). There are two main drawbacks to these approaches.
First, the above works do not consider the matching constraints
considered in our work. Next, they focus on upper confidence
bound (UCB) techniques and hence are not adaptive. We
propose an adaptive algorithm for the single-channel case
combining ideas from the EXP3 algorithm [20] with Lya-
punov optimization. The single-channel algorithm cannot be
directly extended to the general multi-channel case. The main
reason is the complexity of the inner problem arising in

each iteration, a problem over the set of doubly stochastic
matrices (Birkhoff polytope). This can be addressed using the
computationally complex Sinkhorn’s algorithm [21] in each
iteration. The work of [22] uses follow the regularized leader
approach to solve adversarial bandit problems over the set
of doubly stochastic matrices. However, their algorithm relies
on a computationally expensive Sinkhorn iteration. The work
of [23] proposes an algorithm to solve online optimization
problems over transport polytopes. All the inner iterations of
their algorithm have explicit solutions thanks to the rounding
trick introduced for transport polytopes by [24]. In our work,
we adapt the rounding trick to the Birkhoff polytope and
develop an algorithm for general m. Our paper also treats
general (possibly nonsmooth) utility functions, so Frank-Wolfe
methods that rely on smoothness cannot be used.

It should be noted that the concept of adaptiveness con-
sidered in this paper is different from the adversarial set-
ting [20], although they have similarities. In adversarial set-
tings, optimality is defined with respect to the rewards received
throughout the time horizon. This is useful when no stochastic
assumptions can be placed on the rewards. On the other
hand, the adaptiveness considered in this paper is useful when
we can place stochastic assumptions on the rewards, but the
distributions may change from time to time. In this case, we
can define an optimal strategy for each time frame in which the
reward distribution remained constant. Hence, the goal in this
frame is to learn the aforementioned strategy irrespective of
the reward distributions of the past. An approach commonly
used in problems of this flavor is minimizing dynamic re-
gret [25], [26]. Here, the regret is modified to account for
the changing environments and the regret bounds are in terms
of some measure that captures the degree of change. Various
algorithms are developed for the setting with linear utility
functions using optimizing in phases/episodes [25], and sliding
window-based algorithms [26]. We utilize a simpler notion
of adaptiveness and develop an algorithm for the case with
general utility functions and matching constraints. Our notion
of adaptiveness is considered in [12] for the problem of utility
optimal opportunistic scheduling.

B. Our Contributions

• We develop an algorithm to solve the problem of au-
tomatic link selection in multiple access, combining
the ideas of multi-armed bandit learning and Lyapunov
optimization. Although the classical MAB problem has
been widely analyzed for maximizing linear utilities, they
suffer from lack of fairness in assignments when applied
to the considered problem. It is notable that our method
allows either smooth or nonsmooth concave, entrywise
nondecreasing utilities. We prove that the algorithm gets
within O(T−1/3 log(T )) of optimality over any interval
of T consecutive time slots during which the (unknown)
success probabilities do not change. If these probabilities
are different before T0, but change to new probabilities
during {T0, T0 + 1, . . . , T0 + T − 1}, our performance
guarantees for the new interval are independent of behav-
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iors before T0, even though the algorithm does not know
the exact time T0 of the change. Hence, the algorithm is
adaptive.

• We separately consider the special case m = 1 (single-
channel case). This case does not require matching con-
straints and hence has a simpler adaptive algorithm with
a faster analytical convergence guarantee.

C. Notation

For integers a, b, we use [a : b] to denote the set of integers
between a, b inclusive. We use [a] = [1 : a]. For a ∈ Rk,

∥a∥ =
√∑k

i=1 a
2
i , ∥a∥1 =

∑k
i=1 |ai|, and [a]+ ∈ Rk is the

vector with i-th entry max{ai, 0}. We use 1k to denote the k-
dimensional vector of ones. When the dimension is clear from
context, we use 1 instead of 1k. For vectors a, b ∈ Rk, c =
a⊙ b ∈ Rk is defined such that ci = aibi for all i ∈ [k]. For

matrices A,B ∈ Rk×l we use ∥A∥ =
√∑k

i=1

∑l
j=1 A

2
i,j ,

∥A∥1 =
∑k

i=1

∑l
j=1 |Ai,j |, and C = A ⊙ B ∈ Rk×l is

defined such that Ci,j = Ai,jBi,j for all i ∈ [k] and j ∈ [l].

D. Definitions

In this subsection, we define some quantities that are useful
throughout. Define s = max{n,m}. Also, define the sets

∆l,ε =
{
p ∈ Rk :

l∑
i=1

pi = 1, pi ≥ ε ∀i ∈ [l]
}
, where l ∈ N,

S row
ε =

{
P ∈ Rs×s

+ :

s∑
k=1

Pi,k = 1, Pi,j ≥ ε ∀i, j ∈ [s]

}
,

Scol
ε =

{
P ∈ Rs×s

+ :

s∑
k=1

Pk,j = 1, Pi,j ≥ ε ∀i, j ∈ [s]

}
,

Sdoub
ε = Scol

ε ∩ S row
ε , Sε = Scol

ε ∪ S row
ε .

We also denote ∆l = ∆l,0, S row = S row
0 , Scol = Scol

0 ,
Sdoub = Sdoub

0 , and S = S0. We hide the dependence on s
in the notation for sets for clarity.

E. Assumptions

Before moving on to the problem, we state our main
assumptions.
A1 The function ϕ is concave, entrywise nondecreasing, and

has bounded subgradients in [0, 1]n, i.e, |ϕ′

i(x)| ≤ B ∀i ∈
[n], x ∈ [0, 1]n. Hence, ϕ is

√
nB-Lipschitz continuous.

A2 We have access to the solution of the problem
maxx∈[0,1]n [ϕ(x) +

∑n
i=1 cixi], for all c ∈ Rn

+.
Note: This assumption is valid for most separable func-
tions ϕ. For instance, when ϕ is a proportionally fair util-
ity function type of the form ϕ(x) =

∑n
i=1 log(1+βxi),

where β ∈ R+, the problem has an explicit solution.

II. PROBLEM SETUP

Recall the definition of matrices Y (t),S(t) ∈ {0, 1}n×m

and vector X(t) ∈ {0, 1}n. In particular,

Si,j(t) =

{
1 if link i, j is successful in time slot t
0 otherwise,

Yi,j(t) =

{
1 user i is assigned to channel j in time slot t
0 otherwise,

and Xi(t) =
∑m

j=1 Yi,j(t)Si,j(t) for all i ∈ {1, 2, . . . , n}. The
problem of interest is

(P1:) max
Y (1),Y (2),...

lim inf
T→∞

ϕ

(
1

T

T∑
t=1

E{X(t)}

)
(1)

s.t. Y (t) and S(τ) are independent for all
t, τ ∈ N and τ ≥ t (2)

Y (t) and Si,j(τ) are independent for all t, τ ∈ N,
(i, j) ∈ [n]× [m], τ < t, Yi,j(τ) ̸= 1 (3)

Y (t) ∈ {0, 1}n×m ∀t ∈ N (4)
n∑

i=1

Yi,j(t) ≤ 1 ∀t ∈ N, j ∈ [m] (5)

m∑
j=1

Yi,j(t) ≤ 1 ∀t ∈ N, i ∈ [n] (6)

Xi(t) =

m∑
j=1

Yi,j(t)Si,j(t)∀t ∈ N, i ∈ [n], (7)

where constraint (2) ensures transmission decisions do not
know success/failures before they happen; (3) ensures we
cannot use information that is never observed. Define ϕopt as
the optimal objective value of (P1).

III. MULTI-CHANNEL ALGORITHM

The algorithm uses three parameters V > 0, η > 0, and
ε ∈ (0, 1/s]. We first introduce the ROUND function, a tech-
nique adapted from the one introduced in [24] to approximate
a nonnegative matrix by a matrix in the transport polytope.
This function takes a matrix P ∈ Rs×s as an input and
outputs a doubly stochastic matrix. Then, we introduce our
algorithm (Algorithm 1), which uses the ROUND function
as a subroutine. Next, we provide explicit solutions to the
algorithm’s intermediate problems. In Theorem 2, we establish
the performance bound of the algorithm. In section III-A, we
provide intuitive explanations for the steps of the algorithm.
In section III-B, we discuss the major steps in obtaining the
error bound of Theorem 2. Finally, in section III-C, we discuss
the adaptiveness of the algorithm.
ROUND(P ) function for P ∈ Rs×s

+ :
1) Define the matrix P

′
(row normalization of P )

P
′

i,j =

{
Pi,j∑s
l=1 Pi,l

if
∑s

l=1 Pi,l > 1

Pi,j otherwise.

2) Define the matrix P
′′

(column normalization of P
′
)

P
′′

i,j =


P

′
k,j∑s

k=1 P
′
k,j

if
∑s

k=1 P
′

k,j > 1

P
′

i,j otherwise.

3) Define the output matrix Q,

Q =

{
P

′′
+ (1−P

′′
1)(1−(P

′′
)⊤1)⊤

C if C ̸= 0

P
′′

otherwise,
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where C = ∥1− P
′′
1∥1.

It can be shown that ROUND(P ) ∈ Sdoub
ε/s whenever P ∈ Sε.

Algorithm 1: Multi-Channel Adaptive MAC

1 Initialize P̃ (1) ∈ Sdoub
ε and the virtual queues

Q(1) ∈ [0, BV + 1]n arbitrarily.
2 for each time slot t ∈ N do
3 Set P (t) = ROUND(P̃ (t)) (This function yields

P (t) ∈ Sdoub
ε/s ).

4 Using Birkhoff-von Neumann decomposition [27],
find r ∈ N and permutation matrices
M1, . . . ,M r such that P (t) =

∑r
l=1 sl(t)M

l,
and s(t) ∈ ∆r.

5 Sample lt ∼ s(t) and take action Y (t), where
Yi,j(t) = M lt

i,j for all i ∈ [n], j ∈ [m], and
receive S(t)⊙ Y (t) as feedback.

6 Compute the estimator Ŝ(t) for S(t) using
Ŝi,j(t) = Si,j(t)Yi,j(t)/Pi,j(t) for all i ∈ [n], and
j ∈ [m].

7 Find γ(t+ 1) ∈ [0, 1]n, and P̃ (t+ 1) ∈ Q using

γ(t+ 1) = arg min
γ∈[0,1]n

[
− V ϕ(γ) +

n∑
i=1

Qi(t)γi

]
,

P̃ (t+ 1) = arg min
P∈Q

[
−

n∑
i=1

m∑
j=1

Qi(t)Ŝi,j(t)Pi,j

+
1

η
D(P ∥P̃ (t))

]
, (8)

8

where Q = Scol
ε if t is even, and Q = S row

ε if t is
odd, and the divergence D is defined by

D(X∥Y ) =

s∑
i=1

s∑
j=1

Xi,j log

(
Xi,j

Yi,j

)
(9)

for all X,Y ∈ S.
9 Update the virtual queues

Q(t+ 1) = [Q(t) + γ(t+ 1)−X(t)]+ , (10)

where Xi(t) =
∑m

j=1 Yi,j(t)Si,j(t) for i ∈ [n].

Below we focus on solving the intermediate problem (8).
Finding γ(t+1): Notice that this problem can be solved due
to the Assumption A2.
Finding P̃ (t+1): We only consider the case when t is even.
The case when t is odd can be solved similarly. Notice that
we can separately solve for each column of P̃ (t+1). To solve
for the j-th column of P̃ (t+ 1), we define x,y ∈ Rs, where

xi =

{
ηQi(t)Ŝi,j(t) if i ∈ [n], j ∈ [m]

0 otherwise,

and y is the j-th column of P̃ (t). The problem to be solved
is

(P2:) min
p

−
s∑

i=1

xipi +DKL(p∥y)

s.t. p ∈ ∆s,ε,

where DKL(·∥·) in this case is the KL-divergence. It should be
noted that (P2) has a classic structure that is solved in [28]. In
particular, we define z, where zi = yi exp(xi). First, assume
that z is sorted in the nondecreasing order. It can be shown
that there exists l ∈ [0 : s − 1] such that the vector ul ∈ Rs

given by

ul
j =

{
ε if j ≤ l

zj∑s
i=l+1 zi

(1− εl) if j > l

satisfies ul
j ≥ ε for all j ∈ [l+1 : s]. Then it can be shown that

ul is the solution to (P2). Hence, to solve (P2) we calculate
uk for each k ∈ [0 : s− 1] and check the above condition.

Now, we state the error bound of Algorithm 1 as a theorem.

Theorem 1. For any parameters T, T0 ∈ N, ε ∈ (0, 1/s),
η, V > 0, Algorithm 1 yields

ϕopt − ϕ

(
E

{
1

T

T+T0−1∑
t=T0

X(t)

})

≤ n

V
+

9ηnms2

2εV
(BV + 1)2 +

εnms(BV + 1)

V
(11)

+
s

ηV T
log

(
1

ε

)
+

n(BV + 1)2

2V T
+

nB(BV + 1)

T
.

In particular
(1) For any ϵ > 0, choosing V = Θ(1/ϵ), ε = Θ(ϵ) < 1/s,

η = Θ(ϵ3), we have

ϕopt − lim inf
T→∞

ϕ

(
E

{
1

T

T∑
t=1

X(t)

})
= O(ϵ).

(2) In the finite time horizon setting with T, T0 ∈ N,
using η = Θ(1/T ), ε = Θ(1/T 1/3) < 1/s, and
V = Θ(T 1/3), we have

ϕopt − ϕ

(
E

{
1

T

T+T0−1∑
t=T0

X(t)

})
= O

(
log(T )

T 1/3

)
.

Proof. See the technical report [29].

A. Explanation of Algorithm 1

The idea of the algorithm is to find P̃ (t) ∈ Sε as a column
stochastic matrix and a row stochastic matrix alternatively in
odd and even slots. Then we obtain P (t) ∈ Sdoub by approxi-
mating P̃ (t) by a doubly stochastic matrix, using the rounding
trick (Line 3). Next, we sample a permutation matrix from
P (t) using the Birkhoff-von Neumann decomposition [27]
(Lines 4-5). To perform the assignment in the time slot t− 1,
we discard the last s − n rows or the last s − m columns
of the permutation matrix, depending on whether m or n is

4



PROC. IEEE WIOPT, 2025

larger. Next, using the feedback obtained from the assigned
links, we compute the importance sampling-based estimator
Ŝ(t) of S(t) (Line 6). We use Ŝ(t) to compute P̃ (t + 1) in
(8).

The algorithm updates auxiliary variables γ(t) ∈ [0, 1]n

and a virtual queue Q(t) in each iteration (Lines 7-
9). These variables are used to deal with the nonlin-
earity of the function ϕ. In particular, instead of di-
rectly maximizing ϕ

(∑T+T0−1
t=T0

E{X(t)}
)

, we maximize

E
{∑T+T0−1

t=T0
ϕ (γ(t+ 1))

}
subject to the constraint that the

time averages 1
T

∑T+T0−1
t=T0

γ(t + 1) and 1
T

∑T+T0−1
t=T0

X(t)
are close. We enforce the closeness of the time averages using
queuing dynamics in (10) and by establishing a deterministic
bound on Q(t). Maximizing E

{∑T+T0−1
t=T0

ϕ (γ(t+ 1))
}

is

easier since unlike in ϕ
(∑T+T0−1

t=T0
E{X(t)}

)
, the sum over

t is outside of the function ϕ, which allows us to utilize tools
from classical bandit algorithms and Lyapunov optimization
in our implementation.

B. Discussion of Theorem 1

In this section, we summarize the intuition of why Algo-
rithm 1 gives the error bound of Theorem 1. The main idea
of the algorithm is to make sure that the two differences

ϕopt − 1

T

T+T0−1∑
t=T0

E{ϕ(γ(t+ 1))}, (12)

and

1

T

T+T0−1∑
t=T0

E{ϕ(γ(t+ 1))} − ϕ

(
T+T0−1∑
t=T0

E{X(t)}
T

)
(13)

are small.
First, we discuss the importance of parameters V, ε and η.

Like the standard EXP3 algorithm [20], η controls the amount
of exploration required to learn qi,j values. The parameter V
is used to trade-off between the degree to which the algorithm
makes the two differences (12) and (13) small. Small V makes
(13) small and (12) large. The parameter ε is required to ensure
that the algorithm is adaptive.

Now, we explain the main intuition why the error bound
of Theorem 1 holds. First, the ROUND function asserts the
condition P (t) ∈ Sdoub

ε/s for all t ∈ N. Next, notice that we find
P̃ (t) as the optimal value of the problem (8). However, the
assignments (see lines 3-5 of Algorithm 1) are based on P (t).
Hence, it is important to make sure that ∥P (t) − P̃ (t)∥1 is
small. By combining the properties of the ROUND function
along with the idea of separately treating the even and the
odd iterations of the algorithm, we can establish that ∥P (t)−
P̃ (t)∥1 ≤ ∥P̃ (t+1)−P̃ (t)∥1 (see the technical report [29] for
details). Notice that the decision in (8) penalizes the difference
∥P̃ (t+ 1)− P̃ (t)∥1 due to the final divergence term. Hence,
∥P (t)− P̃ (t)∥1 is small.

Due to the properties of the queuing equation (10) and
the auxiliary variables γ(t), we have the deterministic queue

bound Qi(t) ≤ BV + 1 for all i ∈ [n] and t ∈ N. Combining
the bound on ∥P (t) − P̃ (t)∥1 with the deterministic queue
bound, for any T, T0 ∈ N, we can bound the difference (12).
From the queuing equation (10), the entrywise nondecreasing
property of ϕ in Assumption A1, the deterministic queue
bound and Jensen’s inequality, we can bound the difference
(13). Combining the two bounds, we get the result of Theo-
rem 1. See [29] for the detailed proofs.

C. Adaptiveness

It turns out that the proof of Theorem 1 holds even if the
success probabilities qi,j changed before time T0, as long as
they remained constant during [T0 : T0 + T − 1]. In this
case, ϕopt in (11) is the optimal utility of (P1) that uses the
constant success probabilities in [T0 : T0+T −1] of the above
scenario throughout the time horizon. Hence, the adaptiveness
is satisfied.

IV. SINGLE-CHANNEL ALGORITHM

The absence of matching type constraints allows us to sim-
plify Algorithm 1 in the single-channel scenario. We develop
a separate adaptive algorithm for this case (Algorithm 2).
Similar to Algorithm 1, this algorithm uses parameters V >
0, η > 0 and ε ∈ (0, 1/n]. In the algorithm, in the t-th
iteration, we find p(t + 1) ∈ ∆n,ε, using the importance
sampling based estimator of S(t). Then we use p(t + 1)
to sample the user in the (t + 1)-th iteration. We also use
auxiliary variables γ(t) ∈ [0, 1]n and a virtual queue Q(t),
similar to Algorithm 1. We simplify the notations as qi = qi,1,
Si(t) = Si,1(t) and Yi(t) = Yi,1(t) for all i ∈ [n] and t ∈ N.

Algorithm 2: Single-channel Adaptive MAC

1 Initialize p(1) ∈ ∆n,ε, γ(1) ∈ [0, 1]n, and the virtual
queues Q ∈ [0, BV + 1]n.

2 for each iteration t ∈ [T ] do
3 Sample at ∼ p(t) and set Y (t) = eat

.
4 Receive feedback S(t)⊙ Y (t).
5 Compute the estimator Ŝ(t) for S(t) using,

Ŝi(t) =
Si(t)Yi(t)

pi(t)
for all i ∈ [n].

6 Find, p(t+ 1),γ(t+ 1) using

γ(t+ 1) = arg min
γ∈[0,1]n

[
− V ϕ(γ) +

n∑
i=1

Qi(t)γi

]
p(t+ 1) = arg min

p∈∆n,ε

[
−

n∑
i=1

Qi(t)Ŝi(t)pi

+
1

η
DKL(p∥p(t))

]
, (14)

where DKL is the KL-divergence.
7 Update the virtual queues,

Q(t+ 1) = [Q(t) + γ(t+ 1)−X(t)]+, (15)

where X(t) = Y (t)⊙ S(t).

5



PROC. IEEE WIOPT, 2025

Notice that finding γ(t + 1) in (14) is the same problem
as in the multi-channel algorithm, whereas finding p(t+1) is
the same as (P2).

Now, we introduce several lemmas that are useful in the
solution without proof. See [29] for the proofs.

Lemma 1 (Pinsker’s inequality). For x,y ∈ ∆n, we have that
DKL(x∥y) ≥ 1

2∥x− y∥21 ≥ 1
2∥x− y∥2.

Lemma 2. We have that DKL(x∥y) ≤ log
(
1
ε

)
, for all x ∈ ∆n

where y ∈ ∆n,ε.

Lemma 3. We have for all t ∈ N and i ∈ [n], Qi(t) ≤ BV +1.

Define the drift ∆(t) as,

∆(t) =
1

2
E{∥Q(t+ 1)∥2} − 1

2
E{∥Q(t)∥2}. (16)

We have the following bound on ∆(t).

Lemma 4. We have that for all t ∈ {1, 2, . . . },

∆(t) ≤ n+

n∑
i=1

E{γi(t+ 1)Qi(t)} −
n∑

i=1

qiE{Qi(t)pi(t)}.

Proof. The proof follows from standard Lyapunov drift anal-
ysis. See the technical report [29] for the full proof.

Lemma 5. We have that,

−
n∑

i=1

qiE {Qi(t)pi(t)}

≤ ηn

2ε
(BV + 1)2 +

1

η
E {DKL(p(t+ 1)∥p(t))}

−
n∑

i=1

E
{
Qi(t)Ŝi(t)pi(t+ 1)

}
.

Proof. See, [29] for details.

Now, we introduce the following lemma.

Lemma 6. We have that for any T, T0 ∈ N, γ ∈ [0, 1]n, and
p ∈ ∆n,ε,

V Tϕ(γ)− V

T+T0−1∑
t=T0

E{ϕ(γ(t+ 1))}

≤ nT +
ηnT

2ε
(BV + 1)2 +

T+T0−1∑
t=T0

n∑
i=1

(γi − qipi)E{Qi(t)}

+
1

η
log

(
1

ε

)
+

n(BV + 1)2

2
.

Proof. Adding −V E{ϕ(γ(t+1))} to the result of Lemma 4,
we have that,

∆(t)− V E{ϕ(γ(t+ 1))}

≤ n− V E{ϕ(γ(t+ 1))}+
n∑

i=1

E{γi(t+ 1)Qi(t)}

−
n∑

i=1

qiE{Qi(t)pi(t)}

≤(a) n− V E{ϕ(γ(t+ 1))}+
n∑

i=1

E{γi(t+ 1)Qi(t)}

+
ηn

2ε
(BV + 1)2 +

1

η
E {DKL(p(t+ 1)∥p(t))}

−
n∑

i=1

E
{
Qi(t)Ŝi(t)pi(t+ 1)

}
, (17)

where (a) follows by Lemma 5. Combining the decision (14)
with push-back lemma regarding minimizing strongly convex
functions (see, for example [30]), we have that for any γ ∈
[0, 1]n and p ∈ ∆n,ε,

− V ϕ(γ(t+ 1)) +

n∑
i=1

γi(t+ 1)Qi(t)

+
1

η
DKL(p(t+ 1)∥p(t))−

n∑
i=1

Qi(t)Ŝi(t)pi(t+ 1)

≤ −V ϕ(γ) +

n∑
i=1

Qi(t)[γi − Ŝi(t)pi] +
1

η
DKL(p∥p(t))

− 1

η
DKL(p∥p(t+ 1)).

Taking expectations of the above, we have that,

− V E{ϕ(γ(t+ 1))}+
n∑

i=1

E{γi(t+ 1)Qi(t)}

+
E {DKL(p(t+ 1)∥p(t))}

η
−

n∑
i=1

E{Qi(t)Ŝi(t)pi(t+ 1)}

≤ −V ϕ(γ) +

n∑
i=1

γiE{Qi(t)} −
n∑

i=1

E{Qi(t)Ŝi(t)pi}

+
1

η
E {DKL(p∥p(t))} −

1

η
E {DKL(p∥p(t+ 1))}

=(a) −V ϕ(γ) +

n∑
i=1

γiE{Qi(t)} −
n∑

i=1

qipiE{Qi(t)}

+
1

η
E {DKL(p∥p(t))} −

1

η
E {DKL(p∥p(t+ 1))} .

Here, (a) follows from E{Qi(t)Ŝi(t)|H(t)} = qiQi(t), where
H(t) = {Y (1), . . . ,Y (t − 1),Y (1) ⊙ S(1), . . . ,Y (t − 1) ⊙
S(t − 1)} is the history up to time t. This is because Qi(t)
is H(t)-measurable and E{Ŝi(t)|H(t)} = qi. Substituting the
above in (17), we have

∆(t)− V E{ϕ(γ(t+ 1))} ≤ n+
ηn

2ε
(BV + 1)2 − V ϕ(γ)

+

n∑
i=1

(γi − qipi)E{Qi(t)}+
1

η
E {DKL(p∥p(t))}

− 1

η
E {DKL(p∥p(t+ 1))} .

Summing for t ∈ {T0, T0 + 1, . . . , T0 + T − 1} gives

1

2
E{∥Q(T + T0)∥2} −

1

2
E{∥Q(T0)∥2}

6
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− V

T+T0−1∑
t=T0

E{ϕ(γ(t+ 1))}

≤ nT +
ηnT

2ε
(BV + 1)2 − V Tϕ(γ)

+

T0+T−1∑
t=T0

n∑
i=1

(γi − qipi)E{Qi(t)}

+
1

η
E {DKL(p∥p(T0))} −

1

η
E {DKL(p∥p(T + T0))}

≤ nT +
ηnT

2ε
(BV + 1)2 − V Tϕ(γ)

+

T0+T−1∑
t=T0

n∑
i=1

(γi − qipi)E{Qi(t)}+
1

η
log

(
1

ε

)
,

where for the last inequality, we have used Lemma 2. Rear-
ranging the above, and using ∥Q(T0)∥2 ≤ n(BV + 1)2, and
∥Q(T + T0)∥2 ≥ 0 we are done.

Next, we have the following lemma.

Lemma 7. We have for any T, T0 ∈ N

ϕ

(
1

T

(
T+T0∑

t=T0+1

γ(t)

))

≤ ϕ

(
1

T

(
T+T0−1∑
t=T0

X(t)

))
+

nB(BV + 1)

T
.

Proof. This follows combining the queuing equation (15) with
Assumption A1 and Lemma 3. See the technical report [29]
for details.

Now, we are ready to establish the performance bound of
the algorithm.

Theorem 2. For any T, T0 ∈ N, parameters ε ∈ (0, 1/n),
η, V > 0, we have that,

ϕopt − ϕ

(
1

T

T+T0−1∑
t=T0

E{X(t)}

)
≤ n

V
+

ηn

2εV
(BV + 1)2

+
εn2

V
(BV + 1) +

1

ηV T
log

(
1

ε

)
+

n(BV + 1)2

2V T

+
nB(BV + 1)

T
.

We also have the same two results as Theorem 1-(1), and
Theorem 1-(2).

Proof. It can be shown that ϕopt is the optimal solution of the
problem,

(P3:) max
p∈∆n,γ∈[0,1]n

ϕ (γ) (18)

s.t. piqi ≥ γi ∀i ∈ [n]. (19)

See [29] for a proof. Let (p∗,γ∗) denote the optimal solution
of (P3). Substituting p∗(1 − εn) + ε1,γ∗ in Lemma 6, we
have that

V Tϕopt − V

T+T0−1∑
t=T0

E{ϕ(γ(t+ 1))} ≤ nT +
ηnT

2ε
(BV + 1)2

+

T+T0−1∑
t=T0

n∑
i=1

(γ∗
i − qip

∗
i (1− εn)− εqi)E{Qi(t)}

+
1

η
log

(
1

ε

)
+

n(BV + 1)2

2

≤ nT +
ηnT

2ε
(BV + 1)2 +

T+T0−1∑
t=T0

n∑
i=1

(γ∗
i − qip

∗
i )E{Qi(t)}

+ ε

T+T0−1∑
t=T0

n∑
i=1

nqip
∗
iE{Qi(t)}+

1

η
log

(
1

ε

)
+

n(BV + 1)2

2

≤(a) nT +
ηnT

2ε
(BV + 1)2 + εn2T (BV + 1) +

1

η
log

(
1

ε

)
+

n(BV + 1)2

2
, (20)

where (a) follows since qip
∗
i ≥ γ∗

i (since (p∗,γ∗) is feasible
for (P3)), and Lemma 3. Now, we divide by V T and use the
Jensen’s inequality to obtain,

ϕopt − E

{
ϕ

(
1

T

T+T0−1∑
t=T0

γ(t+ 1)

)}
≤ n

V
+

ηn

2εV
(BV + 1)2

+
εn2

V
(BV + 1) +

1

ηV T
log

(
1

ε

)
+

n(BV + 1)2

2V T
.

Now, combining with Lemma 7, we have that,

ϕopt − E

{
ϕ

(
1

T

T+T0−1∑
t=T0

X(t)

)}

≤ n

V
+

ηn

2εV
(BV + 1)2 +

εn2

V
(BV + 1) +

1

ηV T
log

(
1

ε

)
+

n(BV + 1)2

2V T
+

nB(BV + 1)

T
.

Using Jensen’s inequality, we are done.

A. Enforcing user fairness

Given θ ∈ (0, 1/n], consider the case where we require each
user to transmit at least θ fraction of the time on average. Then,
for (P1), we require the additional constraint of

lim inf
T→∞

1

T

T∑
t=1

E{Yi(t)} ≥ θ

This simply transforms the constraint p ∈ ∆n of (P3) to p ∈
∆n,θ. Using ε = θ in Algorithm 2, we can use p∗ directly in
(20) in Theorem 2 instead of (1− εn)p∗ + ε1, which gives

ϕopt − ϕ

(
1

T

T+T0−1∑
t=T0

E {X(t)}

)
≤ n

V
+

ηn

2θV
(BV + 1)2

+
1

ηV T
log

(
1

θ

)
+

nB(BV + 1)

T
+

n(BV + 1)2

2V T

for all T, T0 ∈ N. Since θ is a constant, using η = Θ(1/T ),
and V = Θ(

√
T ), we have,

ϕopt − ϕ

(
1

T

T+T0−1∑
t=T0

E {X(t)}

)
= O

(
1√
T

)
.
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B. Comparison with Algorithm 1

We compare the error bound of Theorem 2 with the error
bound of Theorem 1 for m = 1. Notice that the dependence
of the error on T is the same. But notice that the dependence
of the error bound on n is worse for Algorithm 1. This is due
to the 9ns2 term appearing in the bound of Theorem 1.

V. SIMULATIONS

We consider the function ϕ(x) =
∑n

i=1 log(1 + xi) for the
simulations. We consider two scenarios with n = 5, where in
the first (Fig 1-Left) we use m = 3 (Algorithm 1), and in the
second (Fig 1-Right) we use m = 1 (Algorithm 2). In each
scenario, we run our algorithm for T = 105 time slots. The
qi,j values are changed at T/2. It can be seen that in both
cases, the algorithm converges to the corresponding optimal
values. In addition, it can be seen that the algorithms adapt to
the change of qi,j values.

Fig. 1. ϕopt and objective value of algorithms vs t, Left: m = 3, Right:
m = 1

VI. CONCLUSIONS

This paper focused on the problem of automatic link se-
lection in multiple access with link failures. In particular, we
solved a network utility maximization problem with bandit
feedback on the link failures. Our algorithm was proven to pro-
vide near-optimal utility over any block of T slots where T is
suitably large. Simulations depict the fast learning of efficient
decisions and demonstrate quick adaptation when unknown
probabilities change. Extending this work to consider time-
correlated scenarios where the link successes are modulated
by an unknown Markov chain is future work.
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