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Point-wise and Uniform Convergence of

Fourier Series

Mevan Wijewardena

Abstract

In this article, we explore the problems of point-wise and uniform Convergence of the Fourier

Series, using the knowledge on the mean-square convergence of the Fourier series.

I. INTRODUCTION

In this article, we consider the problems of point-wise and uniform convergence of the Fourier

series. We assume the knowledge on the mean-square converge of Fourier series for the 2π-

periodic complex-valued functions, which are Riemann integrable in [−π, π] [1]. However, it

should be noted that the point-wise convergence of the Fourier series is not guaranteed for

all such functions. Nevertheless, point-wise and uniform convergence can be guaranteed under

additional conditions on the function considered. For instance, if the function considered is

Lipschitz continuous, it can be established that the Fourier series not only converges point-

wise but also converges uniformly to the function considered. Also, it can be established that

the Fourier series converges point-wise to the function at the points at which the function is

differentiable. The continuity of the function does not, in general, guarantee the point-wise

convergence of the Fourier series. In summary, we will establish that for a 2π-periodic complex-

valued Riemann integrable function,

• the Fourier series converges uniformly to the function if the function is Lipschitz continuous.

• the Fourier series converges point-wise to the function at the points at which the function

is differentiable

• the Fourier series does not, in general, converge point-wise if the function is continuous.

In particular, we will prove the existence of a continuous function whose Fourier series

diverges at 0.
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Although point-wise convergence of the Fourier series is not guaranteed for continuous functions,

we will establish that the Fourier series is Césaro summable to the function at the points of

continuity.

II. NOTATION

Let C[−π,π] denote the space of 2π periodic complex valued functions defined on R. It should

be noted that C[−π,π] is isomorphic to the space of complex-valued functions defined on the

unit circle S1 = {z ∈ Z : |z| = 1}. Also L2
R([−π, π];C), B([−π, π],C), C([−π, π],C), and

Cm([−π, π],C) denote the spaces of locally Riemann integrable, bounded, continuous, and m-

times continuously differentiable (m ∈ N) 2π-periodic complex-valued functions defined on R,

respectively. Additionally en ∈ C[−π,π] is defined by en(θ) = einθ for θ ∈ R. Also Ptrig([−π, π];C)

denotes the set of functions of the form,

f =
N∑

n=−N

cnen, (1)

where cn ∈ C, and −N ≤ n ≤ N .

Additionally, f(x) = O(g(x)) as x → a indicates that, there exists a neighborhood U of a

and a constant C > 0 such that |f(x)| ≤ C|g(x)| for all x ∈ U . For a normed vector space X

with norm ∥.∥X , x ∈ X and r > 0, BX(x, r) denotes the open ball centered at x with radius

r i.e BX(x, r) = {y ∈ X : ∥x − y∥X < r}. Also, for two normed vector spaces X and Y ,

B(X, Y ) denotes the set of all bounded linear operators from X to Y .

III. PRELIMINARIES

Proofs for all the results not proved in this section can be found in [1].

A. Some results regarding L2
R([−π, π];C) space

Notice that L2
R([−π, π];C) is isomorphic to the space of Riemann integrable functions de-

fined on [−π, π] taking equal values at −π and π. We can define an inner product ⟨·, ·⟩ on

L2
R([−π, π];C) using,

⟨f, g⟩ = 1

2π

∫ π

−π

f(θ)g(θ)dθ. (2)

Also, this induces the L2 norm ∥·∥,

∥f∥2 = 1

2π

∫ π

−π

|f(θ)|2dθ. (3)
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However, for the above definitions to be valid, we should interpret f = g as f and g agree

almost everywhere.

More generally, we can define the Lp norm on for f ∈ L2
R([−π, π];C), where p ≥ 1 by,

∥f∥pp =
1

2π

∫ π

−π

|f(θ)|pdθ. (4)

Also the uniform norm ||.||u (also denoted by ∥.∥∞) can be defined for f ∈ B([−π, π];C) by,

||f ||u = supx∈[−π,π] |f(x)|. We prove the following important result regarding the uniform norm

and the L2 norm.

Lemma 1. The uniform norm is stronger than the L2 norm in L2
R([−π, π];C).

Proof. Notice that,

∥f∥2 = 1

2π

∫ π

−π

|f(θ)|2dθ ≤ 1

2π

∫ π

−π

||f ||2udθ = ||f ||2u, (5)

which establishes the result.

B. Fourier Series

Given f ∈ C[−π,π] the series,
∞∑

n=−∞

f̂(n)en, (6)

is the Fourier series of f , where,

f̂(n) = ⟨f, en⟩ =
1

2π

∫ π

−π

f(θ)en(θ)dθ (7)

We define the N -th partial sum of the series by SN(f) ∈ Ptrig([−π, π];C), where

SN(f) =
N∑

n=−N

f̂(n)en. (8)

The convergence of the Fourier series is defined by the convergence of the partial sums SN(f).

We assume the knowledge of the convergence of the Fourier series in the mean square sense.

We summarize this and a few other results below.

Theorem 1. Consider f ∈ L2
R([−π, π];C). Then we have,

lim
N→∞

||f − SN(f)||2 = 0. (9)
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Lemma 2. Consider f ∈ C1([−π, π];C). Then we have,

f̂ ′(n) = inf̂(n), (10)

for all n ∈ Z.

Proof. For n ̸= 0,

f̂ ′(n) =
1

2π

∫ π

−π

f
′
(y)e−inydy =(a)

[
f(y)e−iny

]π
−π

− 1

2π

∫ π

−π

f
′
(y)(−in)e−inydy

=(b)
in

2π

∫ π

−π

f
′
(y)e−inydy = inf̂(n). (11)

where (a) follows from integration by parts formulae, and (b) follows since both f and e−n are

2π-periodic. For n = 0,

f̂ ′(0) =
1

2π

∫ π

−π

f
′
(y)dy =(a) f(π)− f(−π) =(b) 0. (12)

where (a) follows from the Fundamental theorem of Calculus, and (b) follows since f is 2π-

periodic.

Theorem 2. (Parseval’s identity for Fourier Series): Consider f, g ∈ L2
R([−π, π];C). Then,

⟨f, g⟩ =
〈
(f̂(n))∞n=−∞, (ĝ(n))∞n=−∞

〉
l2(Z;C)

=
∞∑

n=−∞

f̂(n)ĝ(n). (13)

In particular,

||f ||22 =
∞∑

n=−∞

|f̂(n)|2 (14)

Lemma 3. (Riemann–Lebesgue Lemma for Fourier Series): Consider f ∈ L2
R([−π, π];C). Then,

lim
|n|→∞

f̂(n) = 0. (15)

An equivalent formulation is,

lim
|n|→∞

∫ π

−π

f(y) sin(ny)dy = 0, (16)

and

lim
|n|→∞

∫ π

−π

f(y) cos(ny)dy = 0 (17)
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C. Approximate Identities

A family of functions {fn}∞n=1 of L2
R([−π, π];C) is called an approximate identity if each of

the following three conditions is satisfied.

1) For each n ∈ N,

1

2π

∫ π

−π

fn(x)dx = 1, (18)

2) There exists B ≥ 0 such that, ∫ π

−π

|fn(x)|dx ≤ B, (19)

for each n ∈ N.

3) Given any δ ∈ (0, π), we have that,

lim
n→∞

(∫ −δ

−π

|fn(x)|dx+

∫ π

δ

|fn(x)|dx
)

= 0 (20)

D. Convolutions

Consider two functions, f, g ∈ L2
R([−π, π];C), The convolution of f and g denoted by f ∗g ∈

L2
R([−π, π];C) is a function defined by,

(f ∗ g)(x) = 1

2π

∫ π

−π

f(y)g(x− y)dy (21)

The following lemma summarizes several results regarding convolutions.

Lemma 4. For f, g, h ∈ L2
R([−π, π];C), we have that,

1) (f ∗ g) ∈ C([−π, π],C)

2) f ∗ g = g ∗ f

3) For c ∈ C, (cf + g) ∗ h = c(f ∗ h) + (g ∗ h)

4) ||f ∗ g||u ≤ ||f ||u||g||1

We also have the following theorem regarding convolutions and approximate identities.

Theorem 3. Given an approximate identity {fn}∞n=1 and f ∈ L2
R([−π, π];C). If f is continuous

at x, then,

lim
n→∞

(fn ∗ f)(x) = f(x), (22)

Moreover, if f is continuous in (a, b), then fn ∗ f → f uniformly in any compact sub-interval

[c, d] contained in (a, b)
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E. Césaro Summability

Let (an)∞n=1 be a sequence in C and define the k-th partial sum by,

sk =
k∑

i=1

ai. (23)

The sequence (an)
∞
n=1 (or the sequence of partial sums (sn)∞n=1) is Césaro summable with Césaro

sum A if and only if,

lim
n→∞

1

n

n∑
k=1

sk = A. (24)

It can be proved that if the sequence of partial sums sn converges to A, it is Césaro summable

to A.

F. Dirichlet Kernel

It should be noted that for f ∈ L2
R([−π, π];C), SN(f) can be written as the convolution of f

with another function. In particular, notice that

SN(f)(x) =
N∑

n=−N

f̂(n)einx =
N∑

n=−N

(
1

2π

∫ π

−π

f(y)e−inydy
)
einx

=
1

2π

∫ π

−π

f(y)

(
N∑

n=−N

ein(x−y)

)
dy = (f ∗DN)(x), (25)

where,

DN =
N∑

n=−N

en (26)

is called the Dirichlet kernel. This representation of the Fourier series will be important later in

our analysis. For now, we will use this representation to prove the following results regarding

the Fourier series.

Lemma 5. Consider N ∈ N, and f1, f2 ∈ C([−π, π];C), c ∈ C. Then we have,

SN(f1 + cf2) = SN(f1) + cSN(f2) (27)

Proof. Notice that for x ∈ R,

SN(f1 + cf2) = DN ∗ (f1 + cf2) =(a) DN ∗ f1 + c(DN ∗ f2) = SN(f1) + cSN(f2), (28)

where we have used lemma 4-1) and lemma 4-3) for (a).
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The following lemma establishes a few properties of the Dirichlet kernel.

Lemma 6. Following are a few properties of the Dirichlet kernel.

1) For all N ≥ 0, and y ∈ R we have,

DN(y) =
sin
((
N + 1

2

)
y
)

sin
(
y
2

) (29)

In particular, DN is real-valued and even.

2) The following identity holds, ∫ π

−π

DN(y)dy = 2π (30)

3) The following inequality holds for each N ≥ 2.

||DN ||1 ≥
4

π2

N∑
k=2

1

k
(31)

Proof. See appendix A

IV. POINT-WISE AND UNIFORM CONVERGENCE OF FOURIER SERIES.

The problem of point-wise convergence of the Fourier series can be formulated as follows.

Consider a function f ∈ L2
R([−π, π];C) and x ∈ R. Under what conditions does limN→∞ SN(f)(x)

exist and is finite? An extension of the above question would be to find the cases in which the

above is valid for all x. If this were true, one could find a function g ∈ L2
R([−π, π];C) such that

limN→∞ SN(f)(x) = g(x) for all x ∈ R. When such a function exists, the problem of uniform

convergence of the Fourier Series is to determine whether limn→∞∥SN(f)−g∥u = 0. Notice that

if point-wise convergence does not happen at all real numbers, we cannot talk about uniform

convergence.

Now that we have formally defined the problems of point-wise and uniform convergence of

the Fourier series, we will explore the different cases under which these conditions hold. Indeed,

it can be established that, for general functions in L2
R([−π, π];C), the point-wise convergence

of Fourier series is not guaranteed. Although intuition suggests that the point-wise convergence

is true for continuous functions, it is possible to construct C([−π, π];C) functions for which the

Fourier series diverges at a point.

We begin with the following theorem, which serves as a sufficient condition for determining

whether the Fourier series converges uniformly.
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Theorem 4. Given f ∈ C([−π, π];C). If,
∞∑

n=−∞

|f̂(n)| < ∞, (32)

then SN(f) converges to f uniformly in [−π, π].

Proof. Notice that for n > 0,

|f̂(n)einθ + f̂(−n)e−inθ| ≤ |f̂(n)|+ |f̂(−n)|. (33)

Hence, the Weierstrass M-Test, applied to the sequence of functions, {f̂(0)e0} ∪ {f̂(n)en +

f̂(−n)e−n}∞n=1 yields that, SN(f) converges uniformly to some function g. But notice that

SN(f) is continuous for each N . Hence from the uniform limit theorem, g is continuous. Also

g ∈ C([−π, π];C), since SN(f) ∈ C([−π, π];C) for each N .

Now we prove that f ≡ g. Fix any ε > 0. Notice that, from the mean square convergence of

the Fourier Series (theorem 1), there exists N ∈ N such that n ≥ N implies,

||Sn(f)− f || < ε

2
(34)

But notice that since Sn(f) uniformly converges to g, there exists, M ∈ N such that m ≥ M

implies,

||Sm(f)− g|| ≤ ||Sm(f)− g||u <
ε

2
, (35)

where the first inequality follows from lemma 1. Let Ñ = max{N,M}. Hence, we have

ε > ||SÑ(f)− g||+ ||f − SÑ(f)|| ≥ ||g − f ||, (36)

where the last inequality follows from the triangle inequality. But this will be true for any ε > 0.

Hence ||g − f || = 0. Since g and f are continuous, we have that g = f .

In the following two sections, we will analyze two cases in which the uniform convergence and

the point-wise convergence of the Fourier series hold, respectively. In the section that follows,

we will prove the existence of a continuous function for which the Fourier series diverges at 0.

Finally, we will explore the problem of Césaro summability of the Fourier series of continuous

functions.
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A. Uniform Convergence of the Fourier Series of Lipschitz Functions

In this section, we establish that if f ∈ L2
R([−π, π];C), and f is Lipschitz continuous (|f(x)−

f(y)| ≤ L|x− y| for all x, y ∈ R for some constant L > 0), then SN(f) converges uniformly to

f . We present this in the following theorem.

Theorem 5. Consider f ∈ L2
R([−π, π];C). Moreover, assume that f is Lipschitz continuous.

Then SN(f) converges uniformly to f .

Proof. This proof follows the outline provided in Chapter-3, Exercise-16 in [2].

Assume that f is L-Lipschitz continuous. We prove that,
∞∑

n=−∞

|f̂(n)| < ∞, (37)

which will establish the result from theorem 4.

Fix an h > 0. Define gh : R → C, by

gh(x) = f(x+ h)− f(x− h). (38)

Notice that,

ĝh(n) =
1

2π

∫ π

−π

gh(x)e
−inxdx =

1

2π

∫ π

−π

(f(x+ h)− f(x− h))e−inxdx

=
1

2π

∫ π

−π

f(x+ h)e−inxdx− 1

2π

∫ π

−π

f(x− h)e−inxdx

=
1

2π

∫ π+h

−π+h

f(y)e−in(y−h)dy − 1

2π

∫ π−h

−π−h

f(y)e−in(y+h)dy

=(a)
1

2π

∫ π

−π

f(y)e−in(y−h)dy − 1

2π

∫ π

−π

f(y)e−in(y+h)dy

=
1

2π

∫ π

−π

f(y)(einh − e−inh)e−inydy

= 2i sin(nh)f̂(n), (39)

where (a) follows since, y 7→ f(y)e−iny is 2π-periodic. Hence from Parseval’s identity (theo-

rem 2) we have,

1

2π

∫ π

−π

|gh(x)|2dx = ||gh||2 =
∞∑

n=−∞

|ĝh(n)|2 =
∞∑

n=−∞

4| sin(nh)|2|f̂(n)|2 (40)

But notice that,

1

2π

∫ π

−π

|gh(x)|2dx =
1

2π

∫ π

−π

|f(x+ h)− f(x− h)|2dx ≤ 1

2π

∫ π

−π

(2hL)2dx = 4h2L2. (41)
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Hence combining with (40), we have,
∞∑

n=−∞

| sin(nh)|2|f̂(n)|2 ≤ h2L2. (42)

Now let p ∈ N, and let h = π/2p+1. Notice that for n ∈ N such that 2p−1 < |n| ≤ 2p, we

have that,

π

4
< |nh| ≤ 1

2
. (43)

Hence,

1√
2
< | sin(nh)|. (44)

Hence from (42), we have,

h2L2 ≥
∞∑

n=−∞

| sin(nh)|2|f̂(n)|2 ≥
∑

2p−1<|n|≤2p

| sin(nh)|2|f̂(n)|2 ≥ 1

2

∑
2p−1<|n|≤2p

|f̂(n)|2, (45)

which after substituting for h transforms into,∑
2p−1<|n|≤2p

|f̂(n)|2 ≤ L2π2

22p+1
(46)

Notice that from Cauchy-Schwartz inequality and the above inequality, we have, ∑
2p−1<|n|≤2p

|f̂(n)|

2

≤

 ∑
2p−1<|n|≤2p

1

 ∑
2p−1<|n|≤2p

|f̂(n)|2
 = 2p

 ∑
2p−1<|n|≤2p

|f̂(n)|2


≤ 2p
L2π2

22p+1
=

L2π2

2p+1
. (47)

Hence we have that, ∑
2p<|n|≤2p

|f̂(n)| ≤ πL

2(p+1)/2
. (48)

Hence,
∞∑

n=−∞

|f̂(n)| = |f̂(0)|+ |f̂(1)|+ |f̂(−1)|+
∞∑
p=1

∑
2p−1<|n|≤2p

|f̂(n)|

≤ |f̂(0)|+ |f̂(1)|+ |f̂(−1)|+
∞∑
p=1

πL
√
2
(p+1)

= |f̂(0)|+ |f̂(1)|+ |f̂(−1)|+ πL√
2− 1

< ∞. (49)

Hence we have the desired result.
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As a consequence of the above theorem, we have the following corollary.

Corollary 5.1. Consider f ∈ C1([−π, π];C). The SN(f) converges uniformly to f .

Although the above establishes the uniform convergence of Fourier series for C1([−π, π];C)

functions, more can be said regarding the rate of decay of their Fourier coefficients.

Theorem 6. The Fourier coefficients satisfy f̂(n) = O(1/|n|m) as |n| → ∞, whenever f ∈

Cm([−π, π];C).

Proof. Let f (m) denote the m-th derivative of f . Notice that applying lemma 2 m-times yields,

f̂ (m)(n) = (in)mf̂(n). (50)

Hence,

|f̂(n)| = 1

|n|m
∣∣∣f̂ (m)(n)

∣∣∣ = 1

|n|m

∣∣∣∣ 12π
∫ π

−π

f (m)(y)e−inydy
∣∣∣∣ ≤ 1

2π|n|m

∫ π

−π

|f (m)(y)|dy

=
C

|n|m
, (51)

where C = 1
2π

∫ π

−π
|f (m)(y)|dy is independent of n.

Notice that the above theorem, along with theorem 4, establish that the Fourier series of

C2([−π, π];C) functions converge uniformly.

B. Point-wise Convergence of the Fourier Series of Differentiable Functions

Consider f ∈ L2
R([−π, π];C) such that f is differentiable at a point x ∈ R. Notice that

section IV-A does not guarantee the uniform convergence of the Fourier series for this case.

Nevertheless, it can be established that SN(f)(x) converges to f(x). Hence if f is differentiable,

we have that SN(f) converges point-wise to f . It should be noted that for this result to hold, we

do not require continuous differentiability. We establish the result using the following theorem.

Theorem 7. Consider f ∈ L2
R([−π, π];C). Moreover, assume that f is differentiable at x. Then

SN(f)(x) converges to f(x).

Proof. This proof follows the proof provided in [2]. We begin by defining the function F :

[−π, π] → C,

F (y) =


f(x−y)−f(x)

y
if y ̸= 0

−f
′
(x) y = 0

(52)
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We first establish that F is Riemann integrable in [−π, π]. We state this as a lemma here and

attach the proof in the appendix.

Lemma 7. The function F defined in (52) is Riemann integrable in [−π, π].

Proof. See Appendix B

Now we proceed to the main proof. Notice that,

SN(f)(x)− f(x) =
1

2π

∫ π

−π

f(x− y)DN(y)dy − f(x)

=(a)
1

2π

∫ π

−π

f(x− y)DN(y)dy −
1

2π

∫ π

−π

f(x)DN(y)dy

=
1

2π

∫ π

−π

(f(x− y)− f(x))DN(y)dy

=
1

2π

∫ π

−π

yF (y)DN(y)dy

=(b)
1

2π

∫ π

−π

yF (y)
sin
((
N + 1

2

)
y
)

sin
(
y
2

) dy

=
1

2π

∫ π

−π

yF (y)

(
sin (Ny) cos

(
y
2

)
+ cos (Ny) sin

(
y
2

)
sin
(
y
2

) )
dy

=
1

2π

∫ π

−π

yF (y) cos
(
y
2

)
sin
(
y
2

) sin (Ny) +
1

2π

∫ π

−π

yF (y) cos (Ny) dy, (53)

where (a) follows due to lemma 6-2), and (b) follows due to lemma 6-1).

Since F is Riemann integrable in [−π, π], and y 7→ y cos( y
2 )

sin( y
2 )

is continuous, we have that,

y 7→ yF (y) cos( y
2 )

sin( y
2 )

, and y 7→ yF (y) are Riemann integrable in [−π, π]. Hence from the Rie-

mann–Lebesgue lemma (lemma 3), we have that,

lim
N→∞

SN(f)(x)− f(x) = lim
N→∞

1

2π

∫ π

−π

yF (y) cos
(
y
2

)
sin
(
y
2

) sin (Ny)

+ lim
N→∞

1

2π

∫ π

−π

yF (y) cos (Ny) dy = 0, (54)

which establishes our claim.

C. A Continuous Function with a Diverging Fourier Series

In this section, we prove the existence of a C([−π, π];C) function whose Fourier series

diverges at a point. Although it is possible to provide an explicit construction of such a function,
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we will only focus on proving its existence. We first state the Banach-Steinhaus theorem, which

will be used in the proof.

Theorem 8. (Banach-Steinhaus Theorem): Let X and Y be Banach spaces, and let {Tα|α ∈ A}

be a collection of elements of B(X, Y ) (bounded linear transformation from X to Y ), where A

is an index set. Then either,

sup
α∈A

||Tα||X→Y < ∞, (55)

or,

sup
α

||Tαx||X = ∞, (56)

for all x ∈ G, where G is a dense set in X .

Proof. See Appendix C. We do not prove the full statement. Instead, we prove that if,

sup
α∈A

||Tα||X→Y = ∞ (57)

then there exists x ∈ G for which,

sup
α

||Tαx||X = ∞. (58)

This is enough for our purposes. The proof is taken from [3].

Now we prove the main result of this section.

Theorem 9. There exists f ∈ C([−π, π];C), whose Fourier series diverges at 0.

Proof. The proof is adapted from [4]. Consider the two spaces X = (C([−π, π];C), ||.||u), and

Y = (C, |.|), Notice that X and Y are Banach spaces. Also define the sequence {Tn}∞n=1 of

linear transformations from X to Y where Tn is defined by,

Tnf = SN(f)(0). (59)

Notice that the above is a linear transformation due to lemma 5. Moreover for any f ∈

C([−π, π];C),

|SN(f)(0)| ≤ ||SN(f)||u = ||DN ∗ f ||u ≤(a) ||DN ||1||f ||u, (60)

where (a) follows from lemma 4-4). Hence, we have that Tn ∈ B(X, y), and ||TN ||X→Y ≤

||DN ||1.
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Now we prove that ||TN ||X→Y = ||DN ||1. We do this as follows. For any ε > 0, we construct

a g̃ε ∈ C([−π, π];C), such that, |SN(g̃ε)(0)| > ||DN ||1 − ε, and ||g̃ε||u = 1, which will establish

the result.

First, consider the function g ∈ B([−π, π];C) given by,

g(x) =


1 if DN(x) > 0

0 if DN(x) = 0

−1 if DN(x) < 0

(61)

Notice that ||g||1 = ||g||u = 1. Also notice that DN(x)g(x) = |DN(x)| for each x. Since DN is

a continuous function, the set of discontinuities G of g is the set points at which DN is zero.

Notice that from lemma 6-1), there are only finitely many such points in [−π, π]. Let us denote

G ∩ [−π, π] = {ai}Mi=1 for some M ∈ N, where aj < aj+1 for all 1 ≤ j < M . Let us also define

a0 = −π and aM+1 = π (Notice that π,−π ̸∈ G).

We use g, in order to construct a g̃ε. Let δ > 0 be such that,

δ <
επ

2M ||DN ||u
(62)

and

δ <
aj − aj−1

2
, (63)

for all 1 ≤ j ≤ M +1. We obtain g̃ε in [−π, π] by augmenting g in the intervals (ak − δ, ak + δ)

for each 1 ≤ k ≤ M . Notice that (63) guarantees that the intervals in {(ak−δ, ak+δ)}Mk=1 do not

intersect. For each k such that 1 ≤ k ≤ M , g̃ε|(ak−δ,ak+δ) is defined to be the straight line joining

g(ak− δ) and g(ak+ δ), which makes g̃ε is continuous. Moreover, due to (63), ||g̃ε||u = 1. Also,

|SN(g̃ε)(0)| =
1

2π

∣∣∣∣∫ π

−π

DN(−t)g̃ε(t)dt
∣∣∣∣ =(a)

1

2π

∣∣∣∣∫ π

−π

DN(t)g̃ε(t)dt
∣∣∣∣

=
1

2π

∣∣∣∣∫ π

−π

DN(t)(g̃ε(t)− g(t) + g(t))dt
∣∣∣∣

=
1

2π

∣∣∣∣∫ π

−π

DN(t)(g̃ε(t)− g(t))dt+
∫ π

−π

DN(t)g(t)dt
∣∣∣∣

≥(b)
1

2π

∣∣∣∣∫ π

−π

DN(t)g(t)dt
∣∣∣∣− 1

2π

∣∣∣∣∫ π

−π

DN(t)(g̃ε(t)− g(t))dt
∣∣∣∣

=(c)
1

2π

∣∣∣∣∫ π

−π

DN(t)g(t)dt
∣∣∣∣− 1

2π

∣∣∣∣∣
M∑
k=1

∫ ak+δ

ak−δ

DN(t)(g̃ε(t)− g(t))dt

∣∣∣∣∣
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= ||DN ||1 −
1

2π

∣∣∣∣∣
M∑
k=1

∫ ak+δ

ak−δ

DN(t)(g̃ε(t)− g(t))dt

∣∣∣∣∣
≥ ||DN ||1 −

1

2π

M∑
k=1

∫ ak+δ

ak−δ

|DN(t)||g̃ε(t)− g(t)|dt

≥(d) ||DN ||1 −
1

2π

M∑
k=1

∫ ak+δ

ak−δ

2||DN ||udt

= ||DN ||1 −
2Mδ||DN ||u

π
> ||DN ||1 − ε, (64)

where (a) follows due to (6)-1), for (b) we use triangle inequality, for (c), we have used that g

and g̃ε agree on [−π, π] everywhere except in ∪M
k=1(ak − δ, ak + δ), and for (d) we have used

that |g̃ε(t)− g(t)| ≤ 2 for all t. Hence we are done.

Now notice that from lemma 6-3), we have that,

sup
n∈N

||Dn||1 = ∞, (65)

since
∑∞

k=2 = ∞. Since ||Dn||1 = ||Tn||X→Y for each n ∈ N, we have,

sup
n∈N

||Tn||X→Y = ∞. (66)

Hence from the Banach-Steinhaus theorem, there exists f ∈ C([−π, π];C), such that,

sup
n∈N

||Tnf || = sup
n∈N

||Sn(f)(0)|| = ∞. (67)

In other words, the Fourier series of f diverges at 0. Hence we have the claim.

V. CÉSARO SUMMABILITY OF FOURIER SERIES

Although the Fourier series of a general continuous function may not necessarily converge

point-wise to the function according to section IV-C, it can be established that if f ∈ L2
R([−π, π];C)

is continuous at x, then (Sn(f)(x))
∞
n=1 is Césaro summable to f(x). In order to prove this, we

first introduce Fejer Kernels.

The Fejer kernel FN is defined by,

FN =
1

N

N−1∑
n=0

Dn. (68)

It can be proved that {FN}∞N=1 is an approximate identity. We will prove this in a while. First,

we will look at the implication of this statement.

May 2022 DRAFT



16

Theorem 10. For a function f ∈ L2
R([−π, π];C), continuous at a point x ∈ [−π, π], the Fourier

series of f is Césaro summable to f(x) at x. In particular, if f ∈ C([−π, π];C), since f ∗Fn → f

uniformly, the Fourier series of f is Césaro summable to f .

Proof. If f is continuous at x ∈ [−π, π], then (f ∗ Fn)(x) → f(x) from theorem 3. But notice

that,

(f ∗ Fn) = f ∗

(
1

N

N−1∑
n=0

Dn

)
=(a)

1

N

N−1∑
n=0

(f ∗Dn) =
1

N

N−1∑
n=0

Sn(f), (69)

where equality (a) follows from lemma 4-3). This means that, 1
N

∑N−1
n=0 Sn(f)(x) → f(x). In

other words, the Fourier series of f is Césaro summable to f(x) at x.

Now we prove that, {Fn}∞n=1 is infact an approximate identity.

Theorem 11. {Fn}∞n=1, where Fn is defined in (68) is an approximate identity.

Proof. First, we prove that

FN(x) =
1

N

sin2(Nx/2)

sin2(x/2)
, (70)

for all x ∈ R. We proceed by induction. Notice that,

F1(x) = D0(x) =(a)

sin
(
x
2

)
sin
(
x
2

) = 1 (71)

where (a) follows from lemma 6-1). Hence the result is true for N = 1. Now assume that the

result is true for N = k, where k ≥ 1. Hence,

Fk(x) =
1

k

sin2(kx/2)

sin2(x/2)
(72)

Hence,

Fk+1(x) =
kFk(x) +Dk(x)

(k + 1)
=(a)

1

k + 1

(
sin2

(
kx
2

)
sin2

(
x
2

) +
sin
((
k + 1

2

)
x
)

sin
(
x
2

) )

=
1

k + 1

(
sin2

(
kx
2

)
+ sin

(
x
2

)
sin
((
k + 1

2

)
x
)

sin2
(
x
2

) )

=(b)
1

2(k + 1)

(
1− cos(kx) + cos(kx)− cos((k + 1)x)

sin2
(
x
2

) )

=
1

2(k + 1)

(
1− cos((k + 1)x)

sin2
(
x
2

) )
=(c)

1

(k + 1)

sin2
(

(k+1)x
2

)
sin2

(
x
2

) (73)
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where (a) follows from the induction hypothesis and lemma 6-1), and for (b) and (c), we have

used 2 sin(A) sin(B) = cos(A−B) − cos(A+B). This completes the induction, and we have

the result.

Now we prove that {Fn}∞n=1 satisfies the three properties of an approximate identity.

1) Notice that,

1

2π

∫ π

−π

FN(y)dy =
1

2πN

N−1∑
n=0

∫ π

−π

Dn(y)dy =(a) 1 (74)

where (a) follows from lemma 6-2)

2) This follows from 1) since FN is non-negative from (70).

3) Notice that from (70) we have that FN is an even function. Hence we need to establish

that,

lim
N→∞

∫ π

δ

|FN(x)|dx = 0, (75)

for any δ ∈ (0, π). But notice that x 7→ sin2(x/2) is a non-decreasing function in [0, π].

Hence sin2(x/2) ≥ sin2(δ/2) = c > 0 for all x ∈ [δ, π]. Hence,

lim
N→∞

∫ π

δ

|FN(x)|dx = lim
N→∞

1

N

∫ π

δ

sin2(Nx/2)

sin2(x/2)
dx ≤ lim

N→∞

1

Nc

∫ π

δ

sin2(Nx/2)dx

= lim
N→∞

1

2Nc

∫ π

δ

(1− cos(Nx))dx

= lim
N→∞

1

2Nc

[
x− 1

N
sin(Nx)

]π
δ

= lim
N→∞

1

2Nc

(
π − δ +

1

N
sin(Nδ)

)
≤ lim

N→∞

1

2Nc

(
π − δ +

1

N

)
= 0 (76)

VI. CONCLUSIONS

In this article, we established that the Fourier series of a Lipschitz continuous function

converges uniformly to the function. We also established the point-wise convergence of the

Fourier series at the points at which the function is differentiable. We also proved the existence

of a continuous function whose Fourier series diverges at a point. Finally, we established the

Césaro summability of the Fourier series at the points of continuity of the function.
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APPENDIX A

PROOF OF LEMMA 6

We will prove each statement separately.

1) Notice that,

DN(y) =
N∑

n=−N

einy = e−iNy

2N∑
n=0

einy =(a) e
−iNy

(
1− e(2N+1)iy

1− eiy

)

=
e−i(N+ 1

2)y

e−
iy
2

(
1− e(2N+1)iy

1− eiy

)
=

e−i(N+ 1
2)y − ei(N+ 1

2)y

e−
iy
2 − e

iy
2

=
sin
((
N + 1

2

)
t
)

sin
(
t
2

) , (77)

where (a) follows from the formulae for the sum of the first 2N +1 terms of a geometric

series.

2) Notice that, ∫ π

−π

DN(y)dy =

∫ π

−π

N∑
n=−N

einydy =
N∑

n=−N

∫ π

−π

einydy

=
N∑

n=−N
n̸=0

[
einy

in

]π
−π

+ 2π = 2π (78)

3) This proof follows the outline provided Chapter-2, Problem-2 in [2]. First, notice that,

from part 2),

|DN(y)| =
∣∣sin ((N + 1

2

)
y
)∣∣∣∣sin (y

2

)∣∣ ≥ 2

∣∣sin ((N + 1
2

)
y
)∣∣

|y|
, (79)

where we have used the inequality | sin(x)| ≤ |x|. Hence, notice,

||DN ||1 =
1

2π

∫ π

−π

|DN(y)|dy ≥ 1

π

∫ π

−π

∣∣sin ((N + 1
2

)
y
)∣∣

|y|
dy

=(a)
1

π

∫ π(N+ 1
2)

−π(N+ 1
2)

|sin (θ)|
|θ|

dθ

=(b)
2

π

∫ π(N+ 1
2)

0

|sin (θ)|
|θ|

dθ

≥ 2

π

∫ Nπ

π

|sin (θ)|
|θ|

dθ

=
N−1∑
k=1

2

π

∫ (k+1)π

kπ

|sin (θ)|
|θ|

dθ
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≥
N−1∑
k=1

2

π

∫ (k+1)π

kπ

|sin (θ)|
(k + 1)π

dθ

=
2

π2

N−1∑
k=1

1

(k + 1)

∫ (k+1)π

kπ

|sin (θ)| dθ

=(c)
2

π2

N−1∑
k=1

1

(k + 1)

∣∣∣∣∣
∫ (k+1)π

kπ

sin (θ) dθ

∣∣∣∣∣
=

2

π2

N−1∑
k=1

1

(k + 1)

∣∣∣[cos(θ)](k+1)π
kπ

∣∣∣
=

4

π2

N∑
k=2

1

k
(80)

where in (a), we have used the change of variables θ =
(
N + 1

2

)
y, for (b), we have used

the fact that | sin(θ)|/|θ| is an even function, and in (c), we have used the fact that sin

function does not switch signs in (kπ, (k + 1)π) for all k ∈ N.

APPENDIX B

PROOF OF LEMMA 7

For this, first, we prove that F is bounded. Notice that since f is Riemann integrable in [−π, π],

it is also bounded in [−π, π]. Let |f(x)| ≤ M for all x ∈ R. Also since f is differentiable at x,

there exists, δ > 0 such that, y ∈ (−δ, δ) implies,

1 >

∣∣∣∣f(x− y)− f(x)

−y
− f

′
(x)

∣∣∣∣ = |F (y) + f
′
(x)|, (81)

which implies that, |y| < δ, implies,

|F (y)| < |f ′
(x)|+ 1, (82)

Also, if |y| > δ, we have that,

|F (y)| =
∣∣∣∣f(x− y)− f(x)

y

∣∣∣∣ < 1

δ
(|f(x− y)|+ |f(x)|) < 2M

δ
. (83)

Hence in general, we have,

|F (y)| ≤ max
{
|f ′

(x)|+ 1,
2M

δ

}
= B, (84)

which implies that F is bounded.

Now we prove that F is Riemann integrable in [−π, π]. This is a direct consequence of the

Riemann-Lesbague theorem proved in [1] since the set of discontinuities of F is a subset of the
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set of discontinuities of f along with 0. We will also provide the following proof, which does

not use the Riemann-Lesbague theorem. Notice that, F is Riemann integrable in [−π,−δ] and

[δ, π] for any δ > 0 (This follows since both f and 1
y

are Riemann integrable in the considered

intervals). Pick any ε > 0. Choose partitions P1 and P2 of [−π,−ε/(12B)], and [ε/(12B), π]

respectively such that, |U(P1, F ) − L(P1, F )| < ε/3 and |U(P2, F ) − L(P2, F )| < ε/3. Now

consider the partition defined by P = P1 ∪ P2. Notice that,

U(P, F ) ≤ U(P1, F ) + U(P2, F ) + 2B
ε

12B
, (85)

where the last term is due to the interval [−ε/(12B), ε/(12B)] in P . Similarly,

L(P, F ) ≥ L(P1, F ) + L(P2, F )− 2B
ε

12B
. (86)

Hence,

U(P, F )− L(P, F ) ≤ U(P1, F )− L(P1, F ) + U(P2, F )− L(P2, F ) +
ε

3
< ε. (87)

Hence, F is Riemann integrable in [−π, π] as desired.

APPENDIX C

PROOF OF BANACH STEINHAUS THEOREM

We start with the following lemma.

Lemma 8. Consider any T ∈ B(X, Y ). Then for any x ∈ X and r > 0, we have,

sup
y∈BX(x,r)

||Ty||Y ≥ r||T ||X→Y (88)

.

Proof. Consider z ∈ BX(0, r). Notice that,

max{||T (x+ z)||Y , ||T (x− z)||Y } ≥ 1

2
(||T (x+ z)||Y + ||T (x− z)||Y ) ≥ ||Tz||Y , (89)

where we have used the triangle inequality for the last step. Taking the supremum, we have that,

sup
z∈BX(0,r)

max{||T (x+ z)||Y , ||T (x− z)||Y } ≥ sup
z∈BX(0,r)

||Tz||Y . (90)

But notice that, supz∈BX(0,r) ||Tz||Y = r||T ||X→Y , from the definition of ||T ||X→Y . Also,

sup
z∈BX(0,r)

max{||T (x+ z)||Y , ||T (x− z)||Y } = sup
z∈BX(0,r)

||T (x+ z)||Y = sup
y∈BX(x,r)

||Ty||Y . (91)

Hence we have the desired result.
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Now assume that supα ||Tα||X→Y = ∞. Choose a sequence, (Tn)
∞
n=1 of {Tα|α ∈ A} such that

||Tn||X→Y ≥ 4n. Now we construct a sequence (xn)
∞
n=0 of elements in X inductively as follows.

Start with x0 = 0. Assume we have constructed (xn)
k−1
n=0, where k ≥ 1. Notice that, from

lemma 8 and the definition of supremum, there exists y ∈ B(xk−1, 3
−k) such that

||Tky||Y ≥ 2

3
3−k||Tk||X→Y . (92)

We set xk = y. Notice that, (xn)
∞
n=0 constructed this way is a Cauchy sequence since, ||xk −

xk−1||X < 3−k. Since X Banach space, there exists x ∈ X such that limn→∞ ||xn − x||X = 0.

We now prove that,

||xk − x||X ≤ 1

2
3−k. (93)

for all k ∈ N. For proof, pick an arbitrary k ∈ N. We prove the result for this k. Set ε > 0 such

that ε < 1
2
3−k. Notice that, there exists N ∈ N such that n ≥ N implies,

||xn − x||X < ε. (94)

If k ≥ N , we are done. Hence assume k < N . Notice that,

||xk − xN ||X =

∥∥∥∥∥
N−1∑
j=k

(xj − xj+1)

∥∥∥∥∥ ≤(a)

N−1∑
j=k

∥xj − xj+1∥

≤(b)

N−1∑
j=k

3−(j+1) ≤
∞∑
j=k

3−(j+1) =
3−(k+1)

1− (1/3)
=

1

2
3−k (95)

where (a) follows from the triangle inequality, and (b) follows from (93). Hence,

||xk − x||X = ||xk − xN + xN − x||X ≤ ||xk − xN ||X + ||xN − x||X ≤ 1

2
3−k + ε. (96)

But notice that our choice of ε is arbitrary. Hence, we have,

||xk − x||X ≤ 1

2
3−k, (97)

as desired.

Now notice that,

||Tnx||Y = ||Tn(x− xn + xn)||Y ≥(a) ||Tnxn||Y − ||Tn(x− xn)||Y

≥(b)
2

3
3−n||Tn||X→Y − ||x− xn||x||Tn||X→Y

≥ 2

3
3−n||Tn||X→Y − 1

2
3−n||Tn||X→Y ≥ 1

6
3−n||Tn||X→Y ≥ 1

6

(
4

3

)n

, (98)
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where (a) follows from the triangle inequality, ||Tnxn||Y ≥ 2
3
3−n||Tn||X→Y in (b) follows from

the construction of xn, and the last inequality follows from the choice of the sequence (Tn)
∞
n=1.

Hence,

sup
α∈A

||Tαx||Y ≥ sup
n∈N

||Tnx||Y ≥ sup
n∈N

1

6

(
4

3

)n

= ∞, (99)

as desired.
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