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I. INTRODUCTION

Bounding the tail probability of an average of a random number of samples of a collection

of random variables has application in multi-armed bandit problems [1]. In this article, we will

be summarizing a few results on this.

II. SUB-GAUSSIAN RANDOM VARIABLES

A zero-mean random variable X is σ-sub-Gaussian if,

E{etX} ≤ e
σ2t2

2 , (1)

for all t ∈ R. It can be shown that a zero-mean Gaussian random variable with standard deviation

σ is σ-sub-Gaussian. We have the following lemma, which will be useful.

Lemma 1: For a zero-mean σ-sub-Gaussian random variable X , we have that, Var(X) ≤ σ.

Proof: This can be proved using the Taylor expansion and the dominated convergence

theorem. We will omit the proof for brevity.

Lemma 2: If X1, and X2 are zero-mean independent σ1-sub-Gaussian, and σ2-sub-Gaussian

random variables, respectively, then X1 +X2 is
√

σ2
1 + σ2

2-sub-Gaussian.

Proof: Notice that for any t ∈ R,

E{et(X1+X2)} = E{etX1etX2} =(a) E{etX1}E{etX2} ≤ e
σ2
1t

2

2 e
σ2
2t

2

2 = e
(σ2

1+σ2
2)t

2

2 , (2)

where (a) follows from the independence of X1, and X2. Hence, we are done.
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III. CHERNOFF BOUND FOR SUB-GAUSSIAN RANDOM VARIABLES

The following lemma establishes the Chernoff bound on the right tail probability for σ-sub-

Gaussian Random variables.

Lemma 3 (Chernoff bounds): Given a zero-mean σ-sub-Gaussian random variable X and ε >

0. Then, we have that,

P (X ≥ ε) ≤ e−
ε2

2σ2 . (3)

Also substituting ε =
√

2σ2 log(1/δ) in the above, we have that,

P

(
X ≥

√
2σ2 log

(
1

δ

))
≤ δ. (4)

Proof: Notice that for any t > 0, we have that,

P (X ≥ ε) = P (tX ≥ tε) = P (etX ≥ etε) ≤(a)
E{etX}
etε

≤(b) e
σ2t2

2
−tε

≤ e
σ2

2 (t−
ε
σ2 )

2
− ε2

2σ2 ≤ e−
ε2

2σ2 (5)

where (a) follows from the Markov inequality, and (b) follows since X is σ-sub-Gaussian.

The left-tail probability can be bounded using a similar approach. In general, it holds that for a

zero-mean σ-sub-Gaussian random variable X ,

P (|X| ≥ ε) ≤ 2e−
ε2

2σ2 . (6)

IV. TAIL PROBABILITY BOUNDS ON THE AVERAGE OF A RANDOM NUMBER OF

SUB-GAUSSIAN RANDOM VARIABLES

Consider a sequence of independent and identically distributed zero-mean 1-sub-Gaussian

random variables, {Xt}∞t=1, and a random variable T which takes on positive integer values.

Define,

X̄ =
1

T

(
T∑
t=1

Xt

)
. (7)

The problem of bounding the tail probabilities of X̄ naturally arises in the multi-armed bandit

problem [1], specifically for obtaining worst-case regret bounds for different bandit algorithms.

We will look at certain scenarios. First, we will consider the scenario in which T is independent of

the collection {Xt}∞t=1. In this case, a similar bound to the one derived in Section III holds. When
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{Xt}∞t=1 is allowed to depend on T the above analysis does not hold in general. Unfortunately,

this is the scenario that arises in most practical applications, such as bandit problems. On the

bright side, a slightly weaker bound can be derived for the general case. In fact, this weaker

bound is still very powerful since it does not affect the asymptotic worst-case regret bounds of

bandit algorithms in most cases. For the following section, we follow an exercise in [1].

For convenience, we will define the collection of random variables, {X(t)}∞t=1 where,

X(t) =
1

t

(
t∑

τ=1

Xτ

)
(8)

for all t ∈ N.

A. {Xt}∞t=1 and T are independent

In this case, we have the following lemma. This bound is similar to the classical Chernoff

bound obtained in Section III.

Lemma 4: When {Xt}∞t=1 and T are independent, we have that for any δ ∈ (0, 1),

P

X̄ ≥

√
2 log 1

δ

T

 ≤ δ. (9)

Proof: Notice that,

P

X̄ ≥

√
2 log 1

δ

T

 =
∞∑
t=1

P

X̄ ≥

√
2 log 1

δ

T

∣∣∣∣∣T = t

P (T = t)

=
∞∑
t=1

P

X(t) ≥

√
2 log 1

δ

t

∣∣∣∣∣T = t

P (T = t)

=(a)

∞∑
t=1

P

(
tX(t) ≥

√
2t log

1

δ

)
P (T = t)

≤(b)

∞∑
t=1

e−

(√
2t log 1

δ

)2

2t P (T = t)


=

∞∑
t=1

δP (T = t) = δ, (10)

where (a) follows since {Xt}∞t=1 and T are independent, and (b) follows from Lemma 3, since

tX(t) is
√
t-sub-Gaussian from Lemma 2
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B. {Xt}∞t=1 and T are dependent

Unfortunately, in this case, the bound derived in Section IV-A for the independent case does

not hold in general. Before moving on to an example, we introduce the law of iterated logarithm.

Lemma 5 (Law of iterated logarithm): Given a collection of zero-mean random variables {Yt}∞t=1

with unit variance. Then we have,

lim sup
t→∞

∑t
τ=1 Yτ√

2t log(log(t))
= 1 (almost surely). (11)

Proof: A proof can be found in [2].

Now, we use the law of iterated logarithm to establish the following lemma, which shows that

the bound derived in Section IV-A is not generally valid.

Lemma 6: For any δ ∈ (0, 1), there exists a random variable T such that,

P

X̄ ≥

√
2 log 1

δ

T

 = 1. (12)

Proof: Fix δ ∈ (0, 1). Let γ be the variance of Xt. Notice that from Lemma 1, γ ≤ 1. We

define T to be the least positive integer (if it exists) such that

TX(T ) ≥
√
2T log

1

δ
. (13)

Otherwise, we define T = 1. Let us define the two events,

A =

{
X(1) ≥

√
2 log

1

δ

}
, (14)

and

B =

{
τX(τ) <

√
2τ log

1

δ
∀τ ∈ N

}
. (15)

Notice that,

{T = 1} ≡ {A ∪B}. (16)

We first establish that P (B) = 0. Notice that since {Xt/
√
γ}∞t=1 is a collection of i.i.d zero

mean unit variance random variables, from the law of iterated logarithm we have that

P

( ∑τ
t=1Xt√

2τγ log(log(τ))
≤ 1

2
∀τ sufficiently large

)
= 0. (17)
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Hence, we have that,

P

(
τX(τ) ≤

√
2τ
(γ
4

)
log(log(τ)) ∀τ sufficiently large

)
= 0. (18)

But notice that,

B ⊂
{
τX(τ) ≤

√
2τ
(γ
4

)
log(log(τ)) ∀τ sufficiently large

}
(19)

since for any ω ∈ B and τ large enough such that,(γ
4

)
log(log(τ)) ≥ log

(
1

δ

)
(20)

we have that,

τX(τ)(ω) ≤
√

2τ
(γ
4

)
log(log(τ)). (21)

Hence P (B) = 0. Now, we move on to the main proof. Notice that,

P

X̄ ≥

√
2 log 1

δ

T

 = P

(
TX(T ) ≥

√
2T log

1

δ

)

= P

(
TX(T ) ≥

√
2T log

1

δ

∣∣∣∣∣T = 1

)
P (T = 1) + P

(
TX(T ) ≥

√
2T log

1

δ

∣∣∣∣∣T > 1

)
P (T > 1)

=(a) P

(
X(1) ≥

√
2 log

1

δ
, T = 1

)
+ P (T > 1)

= P (A ∩ (A ∪B)) + P (T > 1)

= P (A) + P (A ∪B)− P (A ∪ A ∪B) + P (T > 1)

= P (A)− P (A ∪B) + P (A ∪B) + P (T > 1)

= −P (B) + P (A ∩B) + P (A ∩B) + P (T > 1)

≥ P (A ∩B) + P (T > 1) = P (T = 1) + P (T > 1) = 1 (22)

where (a) follows since from the definition of T , we have that if T > 1, then,

TX(T ) ≥
√
2T log

1

δ
, (23)

and the last inequality follows since P (B) = 0.

Fortunately, a slightly weaker bound can be obtained. The following lemma summarizes the

result.
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Lemma 7: For any δ ∈ (0, 1), we have that,

P

X̄ ≥

√
2 log T (T+1)

δ

T

 ≤ δ. (24)

Proof: Notice that,

P

X̄ ≥

√
2 log T (T+1)

δ

T

 =
∞∑
t=1

P

X̄ ≥

√
2 log T (T+1)

δ

T
, T = t


=

∞∑
t=1

P

X(t) ≥

√
2 log t(t+1)

δ

t
, T = t


≤(a)

∞∑
t=1

P

X(t) ≥

√
2 log t(t+1)

δ

t


=

∞∑
t=1

P

(
tX(t) ≥

√
2t log

t(t+ 1)

δ

)

≤(b)

∞∑
t=1

e−

(√
2t log

t(t+1)
δ

)2

2t

=
∞∑
t=1

δ

t(t+ 1)
=

∞∑
t=1

(
δ

t
− δ

t+ 1

)
= δ (25)

where (a) follows since for any two events A,B, P (A,B) ≤ P (A), and (b) follows from

Lemma 3, since tX(t) is
√
t-sub-Gaussian from Lemma 2.
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