Sub-Gaussian Random Variables, Tail
Probability Bounds With Random Number of

Samples

Mevan Wijewardena

I. INTRODUCTION

Bounding the tail probability of an average of a random number of samples of a collection
of random variables has application in multi-armed bandit problems [1]. In this article, we will

be summarizing a few results on this.

II. SUB-GAUSSIAN RANDOM VARIABLES

A zero-mean random variable X is o-sub-Gaussian if,
X 02t2
E{e™} <e 7, (1)

for all ¢ € R. It can be shown that a zero-mean Gaussian random variable with standard deviation
o is o-sub-Gaussian. We have the following lemma, which will be useful.
Lemma 1: For a zero-mean o-sub-Gaussian random variable X, we have that, Var(X) < o.
Proof: This can be proved using the Taylor expansion and the dominated convergence
theorem. We will omit the proof for brevity. [ ]
Lemma 2: 1f Xy, and X, are zero-mean independent o-sub-Gaussian, and os-sub-Gaussian
random variables, respectively, then X; + X5 is m—sub—Gaussian.
Proof: Notice that for any ¢t € R,

o'%t2 O'%iz (a‘%+o’§)t2
2

E{e/M1H%)} = B{eM1ee) =) B{e™ME{™?} <e7 e =e 7 )

where (a) follows from the independence of X, and X,. Hence, we are done. [ |
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[II. CHERNOFF BOUND FOR SUB-GAUSSIAN RANDOM VARIABLES

The following lemma establishes the Chernoff bound on the right tail probability for o-sub-
Gaussian Random variables.
Lemma 3 (Chernoff bounds): Given a zero-mean o-sub-Gaussian random variable X and ¢ >

0. Then, we have that,

2

P(X >¢)<e 2z, 3)

&

Also substituting € = y/2021log(1/9) in the above, we have that,

P (X > 4 [ 202 10g<%>> < 4. “4)

Proof: Notice that for any ¢ > 0, we have that,

E{etX 0242
)

—te

P(X >¢e) = P(tX > te) = P(e"* > ") <(4

eta

0'2 £ 2 52 52
<eT(32) 57 < o5 (5)

where (a) follows from the Markov inequality, and (b) follows since X is o-sub-Gaussian. M
The left-tail probability can be bounded using a similar approach. In general, it holds that for a

zero-mean o-sub-Gaussian random variable X,

2
P(|X]|>e¢) <2 27. (6)

IV. TAIL PROBABILITY BOUNDS ON THE AVERAGE OF A RANDOM NUMBER OF

SUB-GAUSSIAN RANDOM VARIABLES

Consider a sequence of independent and identically distributed zero-mean 1-sub-Gaussian
random variables, {X;}:°,, and a random variable T which takes on positive integer values.

Define,
X=x (Z Xt> | )
T
The problem of bounding the tail probabilities of X naturally arises in the multi-armed bandit
problem [1], specifically for obtaining worst-case regret bounds for different bandit algorithms.

We will look at certain scenarios. First, we will consider the scenario in which 7" is independent of

the collection { X, }?° ;. In this case, a similar bound to the one derived in Section III holds. When
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{X:}2, is allowed to depend on 7' the above analysis does not hold in general. Unfortunately,
this is the scenario that arises in most practical applications, such as bandit problems. On the
bright side, a slightly weaker bound can be derived for the general case. In fact, this weaker
bound is still very powerful since it does not affect the asymptotic worst-case regret bounds of
bandit algorithms in most cases. For the following section, we follow an exercise in [1].

For convenience, we will define the collection of random variables, { X (¢)}:°, where,

X(t) = (Z XT) ®)

for all ¢t € N.

A. {Xi}2, and T are independent

In this case, we have the following lemma. This bound is similar to the classical Chernoff
bound obtained in Section III.

Lemma 4: When {X,;}¢°, and T are independent, we have that for any J € (0, 1),

) 2log
Plx> 2225 <5 )
Proof: Notice that,
_ 2log > _ 2log
PlX> - => PX> - =t | P(T=t)
t=1
o0 2log 1
S BOERT e FECR)

=Y P(T=t) =4, (10)

where (a) follows since {X;}{°, and T are independent, and (b) follows from Lemma 3, since

tX (t) is v/t-sub-Gaussian from Lemma 2 [ |
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B. {X;}2, and T are dependent

Unfortunately, in this case, the bound derived in Section IV-A for the independent case does
not hold in general. Before moving on to an example, we introduce the law of iterated logarithm.
Lemma 5 (Law of iterated logarithm): Given a collection of zero-mean random variables {Y;}{2,

with unit variance. Then we have,

S Vs

lim su =1 (almost surely). (1)
or 2t log(log(t)) Y
Proof: A proof can be found in [2]. [ ]

Now, we use the law of iterated logarithm to establish the following lemma, which shows that
the bound derived in Section IV-A is not generally valid.

Lemma 6: For any 6 € (0, 1), there exists a random variable 7" such that,

_ 21og 1
P XZ\/% _ 1 (12)

Proof: Fix § € (0,1). Let -y be the variance of X;. Notice that from Lemma 1, v < 1. We

define 7" to be the least positive integer (if it exists) such that

TX(T) > \/QTlog%. (13)

Otherwise, we define T' = 1. Let us define the two events,

A:{X(Uz,/mog%}, (14)
B:{TX(T)<H27'IOg% VTEN}. (15)

{T=1}={AUB). (16)

and

Notice that,

We first establish that P(B) = 0. Notice that since {X;/\/7}2, is a collection of i.i.d zero

mean unit variance random variables, from the law of iterated logarithm we have that

P < 22—21 Xt S

1
— V7 sufficiently large | = 0. (17)
V277 log(log(1)) ~ 2
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Hence, we have that,

2 (TX(T) < \/ or (%) log(log(r)) Vr sufficiently large) — 0. (18)
But notice that,
B C {TX(T) < \/27' (%) log(log(7)) V7 sufficiently large} (19)
since for any w € B and 7 large enough such that,
v 1
(Z) log(log(7)) > log 5 (20)
we have that,
g
TX(T)(w) < \/27 () tog(iog(r)). 1)

Hence P(B) = 0. Now, we move on to the main proof. Notice that,

_ 2log +
plx> ;gﬁ :P(TX(T)E,MTlog%)
:P(TX(T)Z,/leog%T:1>P<T:1)+P(TX(T)Z,/2T10g%
:(G)P<X<1)Z\1210g§,T:1)+P(T>1)

=P(AN(AUB))+ P(T > 1)

T>1>P(T>1)

=P(A)+ P(AUB)—P(AUAUB)+P(T > 1)

— P(A)— P(AUB)+ P(AUB) + P(T > 1)

— —P(B)+ P(ANB) + P(ANB) + P(T > 1)
>P(ANB)+P(T>1)=P(T=1)+P(T>1)=1 (22)

where (a) follows since from the definition of 7', we have that if 7" > 1, then,

TX(T) > /2T log % (23)

and the last inequality follows since P(B) = 0. n
Fortunately, a slightly weaker bound can be obtained. The following lemma summarizes the

result.
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Lemma 7: For any § € (0,1), we have that,

PlX> w < 4. (24)
Proof: Notice that,
B 21 T+1) o ~ 92100 LT+D)
Plx> OgT _;P X > OgT6 Tt
:ip X(t) > 210g;(t;1),T:t
t=1
< i Pl xw 2log t(t;rl)
t=1

:E P( 2t log t+1)>
)
(\/2tlog%)2

- 5
;tt+1 (Z_t+1)_5 25)

where (a) follows since for any two events A, B, P(A,B) < P(A), and (b) follows from

Lemma 3, since tX (t) is y/f-sub-Gaussian from Lemma 2. u
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