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Abstract

Non-intrusive load monitoring (NILM) involves inferring the appliance level power
usage of a consumer given the aggregate power consumption. Different method-
ologies have been proposed for NILM and recently the focus has shifted towards
deep learning-based approaches. These models utilize sliding window-based ap-
proaches for sequence modelling due to limitations in dealing with long input
sequences. This paper proposes sequence-to-short sequence learning, where a
sub-sequence of an appliance level power window corresponding to the input win-
dow is expected as the output from the learning model. Due to the recent success
of attention-based models in sequence modelling, a novel attention-based autoen-
coder architecture with multiple attention heads is proposed. The attention heads
can extract the relevant signatures of the input sequence by learning to forget the
irrelevant signatures. The paper explores how the attention-based autoencoder ar-
chitecture in conjunction with sequence-to-short sequence learning can be used to
improve both the accuracy and the real-time capability of NILM systems. The per-
formance of our model is evaluated by comparing it with a state-of-the-art model.
In addition, the robustness of our model to noisy data is empirically evaluated
using a custom dataset.
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1. Introduction

Load monitoring has been an extensively researched topic in smart energy
systems [1, 2]. The power consumption data of individual appliances that can be
obtained thanks to load monitoring techniques can be used to improve the energy
efficiency of a system in various ways. Specifically, the high power consuming ap-
pliances can be identified, and they can be operated in a timely manner. Moreover,
devices with anomalous power consumption can be identified [3] by analyzing the
power consumption curves, and can then be repaired or discarded. To this end,
monitoring can be done intrusively [2] or non-intrusively [1], where in the former
case, the appliances are monitored using dedicated smart meters, and in the latter
case, the appliance level power consumption is inferred from the aggregate power
consumption. Although intrusive load monitoring (ILM) is an ideal solution for
consumer feedback, the extensive hardware requirements impose constraints on
its deployment feasibility. In contrast, non-intrusive load monitoring (NILM),
which is also referred to as energy disaggregation, has considerably less stringent
hardware requirements. However, the use of efficient and powerful algorithms is
mandatory for accurate performance.

The NILM concept involves in finding the power consumption of each appli-
ance without directly measuring it, through inference from the aggregate power
consumption. NILM solutions in existing literature typically include a smart elec-
tricity meter that samples the aggregate power, and does the inference through
statistical and machine learning models.
Related Work: Various techniques have evolved over the years for energy disag-
gregation [4, 5, 6, 7, 8]. Supervised learning approaches such as integer program-
ming [4], genetic algorithms [5], knapsack algorithm-based approaches, Bayesian
inference-based approaches [6], as well as unsupervised and semi supervised
learning methods such as motif mining [9], factorial hidden Markov models [7,
10], unsupervised Bayesian learning [11], and discriminative sparse coding [12],
have been explored in existing literature.

The latest research on NILM exploits deep learning-based approaches, thanks
to the availability of high computational power and high volumes of data [8, 13,
14]. The work in this area was strengthened by Kelly et al. [8], who established the
superiority of deep learning-based methods for energy disaggregation compared
to classical methods such as hidden Markov models.

In deep learning-based methods, a dedicated model is trained to infer the
power consumption of each appliance through the aggregate power consump-
tion [8, 13, 14]. Moreover, due to the vanishing and exploding gradient problems
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that arise when dealing with long input sequences, sliding window-based methods
are used in each model. The input to the model is generated by sliding a window
through the aggregate power sequence from which a window of the target appli-
ance level power sequence is expected as the output.

The sliding window methods vary depending on the relative lengths of the in-
put and output windows. In sequence-to-sequence learning, the windows have the
same length and the output window corresponds in time to the input window [15].
In sequence-to-point learning, a single point of the target appliance level power
sequence is expected as the output [13]. Typically this point corresponds in time
to the midpoint of the input window. Sequence-to-point learning has high compu-
tational complexity during inference although it is superior in terms of accuracy.
In sequence-to-sequence learning, the accuracy of the inferred values towards the
beginning and the end of the output window are low. Hence, we adopt sequence-
to-short sequence learning where a sub-sequence of the appliance level power
window corresponding to the input window is expected as the output. This method
has lower computational complexity compared to sequence-to-point learning and
higher accuracy compared to sequence-to-sequence learning. The work of Liang
et al. [16] uses sequence-to-short sequence learning to infer the output window
that has half the length of the input window. In our implementation, we infer
output windows that are smaller in length compared to the input window, which
leads to an accuracy comparable to sequence-to-point learning. In addition to
optimizing in terms of accuracy, this approach can be used to improve the real-
time performance of the system as well. Hence, we introduce two variations of
sequence-to-short sequence learning where the first variation has superior real-
time capability and the second variation has superior accuracy.

Primarily, long short term memory (LSTM) and gated recurrent unit (GRU)
networks are used in the literature to infer the appliance level power window
given the aggregate power window. One dimensional convolutional neural net-
works (1DCNN) are also used due to their feature extraction capabilities [17].
Inspired by the recent success of attention-based architectures in sequence mod-
elling tasks such as neural machine translation [18], in this paper, we propose a
novel attention-based autoencoder model that combines the feature extraction ca-
pabilities of 1DCNN, and sequence modelling capabilities of the attention mech-
anism and LSTM. A model with a single attention layer is considered in [19] for
energy disaggregation. Our work is different, since we exploit the use of multi-
head attention introduced in [18]. Implementing multiple attention heads is ben-
eficial in energy disaggregation as it involves filtering out the power signatures
of the target appliance from a pool of power signatures resulting from multiple
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appliances.
In order to ensure the suitability for different settings, we train and validate the

proposed model on two state-of-the-art NILM datasets collected in two regions.
Moreover, we empirically evaluate the robustness of our models to noisy data
using a custom dataset.
Contributions:

• We propose a novel attention-based autoencoder model with multiple atten-
tion heads for NILM.

• We effectively combine the attention-based autoencoder model with sequence-
to-short sequence learning to improve both accuracy and real-time capabil-
ity of NILM.

• We effectively combine data pre-processing with a novel data synthesis
technique during training.

• We empirically validate the superior performance of the model compared to
the state-of-the-art energy disaggregation algorithms.

Structure: The remainder of the paper is organized as follows. First we define the
NILM problem and present a high level overview of our approach in Section 2.
Then we introduce our model architecture in Section 3 followed by the model
training and inference process in Section 4. We introduce the experimental setup
and present the numerical results in Section 5. Finally, Section 6 concludes the
paper.
Notations: Following notations are used throught the paper. The pi, jq-th element
and i-th row of a matrix Θ is denoted by Θpi,jq, Θpiq, respectively. Similarly, pi, jq-
th element and i-th row of a matrix Θk is denoted by Θkpi,jq, Θkpiq, respectively.
Consider a sequence S̃. A sub-sequence of S̃ of length l starting from index j is
denoted by S̃rj : j ` ls.

2. Problem Formulation

Consider a typical household that consists of a multitude of multi-state ap-
pliances such as washing machines, refrigerators and kettles. Figure 1 illustrates
the energy disaggregation process for such a household, which can be formulated
as follows. Let there be N power consuming appliances in the house. Let the
aggregate power consumption at time t be given by P ptq. Similarly, if piptq, for
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Figure 1: Non-intrusive load monitoring concept. The goal is to infer the power consumption by
each appliance (pi), without directly measuring each pi, using only the aggregate power consump-
tion data (P ).

1 ď i ď N , and eptq represent the power consumption of the i-th appliance and
the undesired noise, at time t, respectively. The aggregate power consumption can
be written as

P ptq “

N
ÿ

i“1

piptq ` eptq. (1)

The smart electricity meter at the house samples signal P ptq at intervals of T
seconds, and outputs a series of samples P̂ rjs, for j P Z, which we refer to as
timestamps, and P̂ rjs “ P pjT q. Similarly, the per-appliance samples are denoted
by p̂irjs “ pipjT q. The NILM problem is to infer p̂irjs given P̂ rjs for j P Z and
i P r1, N s. We note that the majority of household appliances can be categorized
as multi-state appliances. We omit appliances with continuously varying power
demands such as lighting and laptop/phone chargers in our modeling due to their
“on time” being long and unpredictable.

We adopt a deep learning-based model for energy disaggregation. It is well
known that deep neural networks suffer from vanishing and exploding gradient
problems when the inputs to the model are long sequences. Hence, we resort to
a sliding window-based approach for feeding data to the model. To this end, the
input to the deep learning-based model of each appliance is generated by sliding a
window through the aggregate power sequence, and a sub-sequence of the corre-
sponding appliance level power window is expected as the output. This approach,
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Figure 2: The sequence-to-short sequence learning concept.

which is known as sequence-to-short sequence learning, is illustrated in Figure 2.
The input to the model for the i-th, 1 ď i ď N , appliance is P̂ rj : j ` wis, where
j P r1, l´wi ` 1s, l is the length of the power sequence and wi is the length of the
input window of the i-th appliance. The input P̂ rj : j ` wis is used to infer the
expected output from the model which is p̂irj ` si : j ` si ` w̃is, where w̃i ď wi

is the length of the output window of the i-th appliance and si P r0, wi ´ w̃is is
illustrated in Figure 2. Setting w̃i to a small value results in either high accuracy
or high real-time capability depending on the value of si, as described below.

From Figure 2 observe that, the output for the pj`si ´1q-th timestamp is gen-
erated after sampling the input for the pj ` wi ´ 1q-th timestamp. Hence, for the
pj`si ´1q-th timestamp, the output is generated pwi ´siqT `Tproc after sampling
the input, where Tproc is the time taken for inference and other processing tasks.
Hence, when w̃i is small, increasing si is favourable for real-time performance.
Moreover, when w̃i is small and si is close to wi{2, the input window captures a
significant amount of timestamps before and after each timestamp of the output
window leading to superior disaggregation performance. Hence, we propose two
variations of sequence-to-short sequence learning, where in variation 1 (V1) we
use si close to wi and in variation 2 (V2) we use si close to wi{2. Both of the
above variations are implemented using the attention-based autoencoder architec-
ture described in Section 3.

3. Model Architecture

This section outlines our architecture which consists of the output soft-max
scaling layers and the autoencoder with attention layers. The architecture overview
is shown in Figure 3.
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Figure 3: The attention-based autoencoder architecture for the i-th appliance.

3.1. Soft-max scaling layers
Let the number of states of the i-th appliance be Mi and the mean power

consumption of the u-th p1 ď u ď Miq state be p̃i,u. Let Oi and W i be the
random vectors denoting the input and output windows. Then the expected value
of Oi given W i can be written as,

EtOi|W iu “ F ip̃i, (2)

where F i P Rw̃iˆM is a matrix whose element pt, uq is PrpΦi,t “ u|W iq, Φi,t is
the random variable representing the state of the appliance at the t-th timestamp
of the output window and p̃i P RMiˆ1 is a vector whose u-th element is p̃i,u. To
model F i, w̃i soft-max scaling layers are added at the model output as shown
in Figure 3, where Softmax layer tp1 ď t ď w̃iq outputs the t-th row of matrix
F i. The expected output window can then be calculated from the softmax layer
outputs using Equation (2).

3.2. Autoencoder
As shown in Figure 4, the autoencoder consists of an encoder with convo-

lutional layers, and a decoder with convolutional, multi-head attention [18] and
LSTM layers. The convolutional encoder extracts the signatures of the appliances
and presents them to the decoder. We propose multi-head attention layers for the
decoder which are capable of filtering out the signatures of the target appliance
from a pool of signatures resulting from multiple appliances.

The outputs from all the convolutional layers are zero padded in order to en-
sure equal dimensions for the input and the output of the layer. Moreover, the
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LSTM layers are set to output the predicted state vector at all time-steps. A multi-
head attention layer consist of several attention layers , both of which are de-
scribed below.
Multi-head attention layer: The architecture of the multi-head attention layer is
shown in Figure 5 [18]. The inputs to a multi-head attention layer can be given
by the two matrices Qi and V i, each having dimensions of w̃i ˆ f̃i. The input
matrices are sent through independent feed-forward layers to obtain Hi pairs of
w̃i ˆ f̃i matrices (Q̃i,m, Ṽ i,m), for 1 ď m ď Hi as shown in Figure 5. Each of
the pairs act as an input to the independent attention layers described below, from
which the obtained outputs are processed, as shown in Figure 5, to obtain the layer
output Oi having the same shape as the inputs.
Attention layer: The architecture of an attention layer is shown in Figure 6. An
attention layer takes two matrices Q̃i and Ṽ i of shape w̃i ˆ f̃i as input, and maps
them to an output matrix Õi having the same shape as the inputs. The rows of
Q̃i and Ṽ i are named as queries and values, respectively. Both queries and values
represent learnt appliance signatures at different timestamps. The first step of
attention is calculating the similarity score matrix Ψi between Q̃i and Ṽ i, where
Ψipn,jq “ dJ

i,1tanhpΦi,1Q̃
J

ipnq ` Φi,2Ṽ
J

ipjq ` di,2q [20]. Here Φi,1 P Rg̃iˆf̃i ,Φi,2 P

Rg̃iˆf̃i , di,1 P Rg̃iˆ1 and di,2 P Rg̃iˆ1 are learnt during training, such that Ψipn,jq

represents a score of similarity between the two vectors Q̃ipnq and Ṽ ipjq. Secondly,
we obtain the normalized similarity matrix Ωi where,

Ωipn,jq “
exppΨipn,jqq

řw̃i

p“1 exppΨipn,pqq
. (3)

Finally, the the output Õi is computed using Õi = ΩiṼ i. Observe that, the atten-
tion layer outputs a matrix whose t-th row is computed as a weighted sum of the
values, where the weight assigned to each value depends on it’s similarity to the
t-th query. Hence, the parameters of the attention layer can be learnt such that,
each row of the output matrix represents a weighted sum of the signatures, where
larger weights are assigned to relevant signatures.

4. Model Training and Inference

This section gives an overview of the training and inference process that is
used with the model outlined in Section 3 and elaborates the data synthesis tech-
nique.
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4.1. Overview
Figure 7 shows an overview of the model training methodology. Data required

for model training can be obtained either by implementing a custom data collec-
tion framework or by using already available NILM datasets. Typically, NILM
datasets consist of simultaneous readings of the aggregate power signal and read-
ings of the power signals of individual appliances of several households paired
with a timestamp [21, 22]. We train the models to predict the output window di-
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Figure 4: Autoencoder.
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Figure 7: The overview of the proposed model training methodology.

rectly, where p̃i is implemented using a feed-forward layer which is learnt during
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training. We use mean squared error as the loss function. Alternatively, the mod-
els can be trained to predict F i, where the state distribution for the appliance level
power values in the dataset and p̃i are obtained using Gaussian mixture models. In
this case, categorical cross entropy is used as the loss function. Both approaches
lead to similar performance.

The aggregate and target appliance level power window pairs required for
model training are formed from the datasets. In addition, training window pairs
are synthesized (Section 4.2) in order to improve both the quality and the quantity
of data. The aggregate and target appliance level windows are then scaled linearly
such that they lie in r0, 1s. Formally, the scaled window for p̂irj : j ` ŵis is given
by p̂i,scaledrj : j ` ŵis, where p̂i,scaledrj ` ts “ pp̂irj ` ts ´ pmin

i q{ppmax
i ´ pmin

i q for
0 ď t ă w̃ and pmax

i and pmin
i represent the maximum and minimum power values

of p̂i, respectively. The aggregate power window is scaled similarly. The scaling
will reduce vanishing and exploding gradient problems during training.

The attention-based autoencoder model described in Section 3 is trained on
a mixture of real and synthetic data. The data windows are fed in mini-batches
during training. During inference, the inputs to the model are scaled similar to
the training phase using the scaling parameters obtained during training. After
inference, the predicted appliance level power window yi,rescaledrj : j ` w̃s is
obtained by letting, yi,rescaledrj ` ts “ ppmax

i ´ pmin
i qyirj ` ts ` pmin

i for 0 ď t ă w̃,
where yirj : j ` w̃s represents the window output from the model.

4.2. Data Synthesis
We adopt a data synthesis technique where training data is synthesized from

the available data described in Section 4.1. Data synthesis helps to increase the
quantity of training data as well as to improve the generalizability of the models.
The data synthesis process is outlined in Algorithm 1. We consider the dataset of
aggregate power windows from a given house to be X . The dataset of appliance
level power windows of the i-th (1 ď i ď N ) appliance from the same house
is denoted by Y . During data synthesis, X and Y are populated by synthesized
aggregate power windows and the corresponding appliance level power windows
of the i-th (1 ď i ď N ) appliance. The data synthesis for the other appliances and
houses follow the same procedure.

The steps taken for training data synthesis for the i-th appliance in a given
house is outlined Algorithm 1. The appliance level power windows are generated
by sliding a window of length wi through p̂i with a shift w̃i between two consec-
utive windows. We first obtain the appliance level power window y of length wi

(line 5). If y contains at most P num
i values greater than P thresh

i , we discard y with
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a probability 1 ´ P choose
i (lines 6-14). If y is not discarded, we generate c aggre-

gate power windows corresponding to y (line 4). An aggregate power window x
corresponding to y is generated by adding power windows from each appliance
except the i-th appliance to y. Formally, we generate x by letting

x “ y `

N
ÿ

m“1
m‰i

p̂krbm : bm ` wis, (4)

where bm is chosen uniformly such that, 1 ď bm ď l ´ wi ` 1. Then, we add x
and yrsi : si ` w̃is to X and Y respectively for each x (line 15-22), where si is
defined in Section 2. The selective discarding of appliance level power windows
prevents the model from learning to predict flat power signals arising from the
skewed data distribution of some appliances due to the appliance being in low
power consumption modes or being turned off for most of the time. Note that
time dependencies and usage patterns between appliances will be lost due to the
data synthesis technique. Time dependencies between appliances can be exploited
to improve the performance of appliance combinations such as toaster and kettle
which are typically operated within a short time gap [23, 24]. But the performance
of appliances which do not exhibit such dependencies will be reduced, which will
reduce the model generalizability.

5. Experiments

In this section, we describe the experiments conducted to evaluate the per-
formance of our method. We evaluate the two variations of sequence-to-short
sequence learning described in Section 2. We compare V2 with a state-of-the-art
model in terms of accuracy to establish the superiority of our model. Then we
highlight the utility of V1 for a real-time setting while discussing the trade-off in
terms of performance compared to V2. Finally, we evaluate the applicability of
our models to custom data. Using the custom data, we also empirically evaluate
the robustness of our models to noise.

5.1. Experimental Setup
We use REDD [22] and UK-DALE [21] datasets for training and evaluation

purposes. UK-DALE and REDD datasets have appliance level power readings
sampled at a period of 6 and 3 seconds, respectively. In order to eliminate the
inconsistencies of sampling rate in the dataset, we first upsample the data to 1
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Algorithm 1: Algorithm for training data synthesis for the i-th appliance
in a given house.

Data: p̂m for 1 ď m ď N , P thresh
i , P num, P choose

i , si, c
Result: X, Y

1 Set l to be the length of p̂i;
2 for 0 ď n ă pl ´ wiq{w̃i do
3 Set f “ pw̃inq;
4 for 0 ď j ă c do
5 Initialize y “ p̂irf : f ` wis, selected=False;
6 Calculate number of values of y greater than P thresh and let this

value be g;
7 if g ă P num then
8 Sample r P Up0, 1q;
9 if r ą P choose

i then
10 Set selected = True;
11 end
12 else
13 Set selected = True;
14 end
15 if selected is True then
16 Initialize x “ y;
17 for 1 ď m ď N and m ‰ i do
18 Sample bm P r1, l ´ wi ` 1s;
19 Add p̂mrbm : bm ` wis to x;
20 end
21 end
22 Add x, yrsi : si ` w̃is to X ,Y ;
23 end
24 end
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second followed by downsampling to 3 seconds. During upsampling, a gap greater
than 2 minutes between two consecutive timestamps in the original data is treated
as missing data. Data from different houses are used in the training and testing
stages as tabulated in Table 1. We consider the appliances refrigerator (FRDG),
washing machine (WASH), microwave (MWAV), kettle (KETL), and dishwasher
(DWSR) for the experiments.

Table 1: Houses used for training/testing and the parameters for different devices

UKDALE House No. REDD House No. Parameters
Training Testing Training Testing Mi pon

i P num
i P choose

i

FRDG 1 2 2,6 1 4 50 10 1
WASH 1 2 3,6 1 4 50 20 0.5
MWAV 1 2 2,6 1 3 200 10 0.6
KETL 1,3,5 2 - - 4 300 10 0.6
DWSR 1,3 2 2,6 1 4 50 10 0.5

Values for Mi, appliance switch on power threshold pon
i , P choose

i and P num
i are

given in Table 1. The parameter pon
i is set by considering the average on/off power

values of the i-th appliance. P thresh
i is set equal to pon

i . The parameters Mi, P num
i

and P choose
i are set by experimenting with several values. An initial value for Mi

can be set by considering the number of distinct states of the i-th appliance. Sim-
ilarly, the average duration of a single operational cycle and the average on-time
of the i-th appliance can be used to initialize P num

i and P choose
i , respectively. The

training mini-batch size is set to 512 for all appliances. We consider appliance-
independent values for the parameters f̃i, g̃i, Hi, wi, w̃i and si, thus we drop the
index i for brevity, and we set f̃ , g̃, H , w and w̃ to 32, 4, 8, 1024 and 8, respec-
tively. The parameters f̃ and H are set to be larger than the total number of distinct
appliance signatures of all the appliances and the number of appliance signatures
of a single appliance, respectively. On the other hand, setting these parameters too
large may lead to overfitting. The parameter w is set such that the input window
captures the complete duration of a single operational cycle of any appliance. We
implement the two variations of sequence-to-short sequence learning by setting
s “ 1008 for V1 and s “ 508 for V2. We also compare the performance of
the two variations with the sequence-to-point architecture introduced in [13]. Our
choice of [13] as the benchmark was motivated by the following reasons.

• An architecture with sequence-to-point output is expected to be more ac-
curate compared to the same architecture with sequence-to-short sequence
output. Hence, the performance gain from our approach can be established.
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• The approach in [13] has been used as a performance benchmark in existing
literature.

• Results for both REDD and UK-DALE datasets, which were used in our
experiments, are presented in [13].

5.2. Experimental Results
As the main evaluation metrics, we use the disaggregation performance met-

rics mean absolute error

MAE “
1

L

L
ÿ

m“1

|ỹm ´ ym|, (5)

and signal aggregate error

SAE “
|
řL

m“1 ỹm ´
řL

m“1 ym|
řL

m“1 ym
, (6)

where ym, ỹm and L denote the actual appliance power consumption at time m,
the predicted appliance power consumption at time m and the length of the power
sequences, respectively [13]. MAE measures how well the model approximates
the actual appliance power waveform, whereas the SAE measures how well the
model approximates the total power consumption of an appliance over a period
of time. Although MAE is a more intuitive metric in a NILM setting, SAE will
be useful from a user point-of view as the user will also care about the energy
consumed by the appliance over a period of time. We also evaluate the models on
event detection metrics such as precision, recall, accuracy and the F1 score, calcu-
lated using pon

i . The above mentioned metrics are used to evaluate the following
models.

• (M1): Sequence-to-point (seq2point) method in [13]

• (M2): Our approach - V1

• (M3): Our approach - V2

Table 2a and Table 2b tabulate the performance of the models for UK-DALE
and REDD datasets, respectively. Considering Table 2a, it can be seen that (M3)
outperforms the seq2point architecture proposed in [13] in terms of MAE for all
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the appliances. (M1) outperforms (M3) in terms of SAE for refrigerator, wash-
ing machine and microwave. When the appliance signatures are lost in the noise
caused by other appliances, (M1) tends to better predict the average power con-
sumption of the appliance. Hence, the superior performance in terms of SAE can
be observed. The SAE performance of our models can be improved further by
incorporating SAE to the training loss function.

The event detection capability of (M3) is superior to (M1) except in the mi-
crowave scenario as depicted by the F1 scores. The poor performance of all the
models for the microwave is due to the absence of a distinctive signature that can
separate the microwave from other devices. When s “ 508, the input window
captures a significant amount of timestamps after and before each timestamp of
the output window. In contrast, when s “ 1008, only a few timestamps after a
given timestamp of the output window are captured by the input window. Hence
in (M2), the inferences are done without observing the complete signature of the
appliance, which can lead to confusions among appliances. On the other hand,
when s “ 1008, assuming the sampling and the processing delays are negligible,
the output window is generated 48 seconds after sampling the earliest of the corre-
sponding inputs whereas the respective time when s “ 508 is 25 minutes. Hence,
in a real-time setting, (M2) can be used for event detection and disaggregation in
near real-time where the inferences can be improved later using (M3). Since (M3)
performed better than (M1) for UK-DALE data, we did not apply (M1) to REDD
dataset (Table 2b). A similar structure has been followed in [13].

Figure 8 depicts example disaggregations on the UK-DALE data for the five
devices using the three models. Each subfigure shows the aggregate power signal
considered for disaggregation, the ground truth (ideal dissaggregation) and the
predicted dissaggregation by our approach. The superior disaggregation perfor-
mance of (M3) can be observed through the examples.

5.3. Evaluation On Custom Data
We also tested our models on custom data collected using the power moni-

toring hardware we developed as shown in Figure 9. The 1{3 Hz power samples
are calculated using current and voltage values sampled at a high frequency. The
voltage and current sampling frequency can be adjusted to control the noise levels
of the power data. We chose a lower sampling rate (200Hz) to analyze the effect
of high measurement noise on model performance. For example, the ground truth
curve of Figure 10 shows the noisy data collected from refrigerator over 800 min-
utes. We only tested (M2) on custom data since performance of (M3) is expected
to be superior. Table 3 shows the disaggregation results for kettle, microwave and
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(d). (M1) - washing machine
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(e). (M2) - washing machine
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(f). (M3) - washing machine
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Ground truth
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(g). (M1) - microwave

Aggregate
Ground truth
Prediction

(h). (M2) - microwave

Aggregate
Ground truth
Prediction

(i). (M3) - microwave
Aggregate
Ground truth
Prediction

(j). (M1) - kettle

Aggregate
Ground truth
Prediction

(k). (M2) - kettle

Aggregate
Ground truth
Prediction

(l). (M3) - kettle
Aggregate
Ground truth
Prediction

(m). (M1) - dish washer

Aggregate
Ground truth
Prediction

(n). (M2) - dish washer

Aggregate
Ground truth
Prediction

(o). (M3) - dish washer

Figure 8: The disaggregation results on UK-DALE dataset for refrigerator, washing machine,
microwave, kettle and dish washer using (M1), (M2) and (M3).
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Table 2: The evaluation of the models

Metric Model FRDG WASH MWAV KETL DWSR

MAE (M1) 24.45 10.77 11.24 20.55 24.20
(M2) 21.10 12.00 8.42 16.82 35.80
(M3) 16.01 8.80 7.90 9.34 21.31

SAE (M1) 0.082 0.020 0.385 0.354 0.063
(M2) 0.212 0.264 0.526 0.271 0.366
(M3) 0.240 0.250 0.563 0.242 0.013

Recall (M1) 0.8590 0.9246 0.7060 0.9678 0.9140
(M2) 0.7880 0.8868 0.1480 0.9780 0.4827
(M3) 0.8587 0.9330 0.1792 0.9809 0.9036

Precision (M1) 0.8299 0.3369 0.2990 0.9021 0.2941
(M2) 0.8119 0.3077 0.3881 0.9330 0.7646
(M3) 0.9205 0.6211 0.4478 0.9602 0.5843

Accuracy (M1) 0.8589 0.9780 0.9900 0.9986 0.9354
(M2) 0.8245 0.9757 0.9942 1.0000 0.9811
(M3) 0.9041 0.9926 0.9947 0.9994 0.9790

F1 score (M1) 0.8441 0.4939 0.4201 0.9338 0.4450
(M2) 0.7998 0.4568 0.2070 0.9550 0.5918
(M3) 0.8885 0.7458 0.2560 0.9705 0.7097

(a) UK-DALE dataset

Metric Model FRDG WASH MWAV DWSR

MAE (M1) - - - -
(M2) 23.49 40.18 14.45 5.12
(M3) 22.14 40.12 9.56 5.10

SAE (M1) - - - -
(M2) 0.054 0.387 0.254 0.126
(M3) 0.042 0.439 0.328 0.285

Recall (M1) - - - -
(M2) 0.9413 0.5894 0.9891 0.7508
(M3) 0.9301 0.5266 0.7224 0.7169

Precision (M1) - - - -
(M2) 0.9243 0.8114 0.3210 0.6085
(M3) 0.9513 0.9848 0.8983 0.4808

Accuracy (M1) - - - -
(M2) 0.9393 0.9774 0.9918 0.9911
(M3) 0.9476 0.9799 0.9985 0.9872

F1 score (M1) - - - -
(M2) 0.9327 0.6828 0.4847 0.6722
(M3) 0.9406 0.6863 0.8009 0.5756

(b) REDD dataset

refrigerator. From the high disaggregation and event detection performance, it can
be concluded that the model is robust to measurement noise. Figure 10 shows an
example disaggregation for refrigerator. The denoising effect of the model can be
observed where the predicted power curve is less noisier than the actual power
curve. The noise variance of the actual appliance level power data for the refrig-
erator shown in Figure 10 is around 21.4 whereas the corresponding value for the
predicted appliance level power data is around 5.3.

Figure 9: Power monitoring hardware.

Ground truth
Prediction

Figure 10: Example disaggregation for the re-
frigerator using custom data.
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Table 3: The evaluation of (M2) for custom data

Metric FRDG KETL MWAV

MAE 6.65 3.82 46.06

SAE 0.01 0.05 0.88

Recall 0.9839 0.9778 0.9839

Precision 0.9905 0.9910 0.9717

Accuracy 0.9797 0.9991 0.9985

F1 score 0.9872 0.9843 0.9777

6. Conclusion

We have combined sequence-to-short-sequence learning with a novel attention-
based autoencoder architecture and have explored how the combination can be
used to enhance both the accuracy and the real-time capability of NILM systems.
We have empirically validated the superior performance of the proposed model
by comparing it with a state-of-the-art model using real-world data. We have also
used a custom dataset to evaluate our models using noisy data from which we
demonstrated the robustness of the models. Detection of appliances with anoma-
lous power consumption and real-time detection of events such as refrigerator
door opening are possible future extensions of the work proposed in this paper.
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