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Multi-Player Resource-Sharing Games with

Fair Reward Allocation

Mevan Wijewardena, Michael J. Neely

Abstract

This paper considers an online multi-player resource-sharing game with bandit feedback. Multiple

players choose from a finite collection of resources in a time slotted system. In each time slot, each

resource brings a random reward that is equally divided among the players who choose it. The reward

vector is independent and identically distributed over the time slots. The statistics of the reward vector

are unknown to the players. During each time slot, for each resource chosen by the first player, they

receive as feedback the reward of the resource and the number of players who chose it, after the choice

is made. We develop a novel Upper Confidence Bound (UCB) algorithm that learns the mean rewards

using the feedback and maximizes the worst-case time-average expected reward of the first player. The

algorithm gets within O(log(T )/
√
T ) of optimality within T time slots. The simulations depict fast

convergence of the learnt policy in comparison to the worst-case optimal policy.

Index Terms

Resource-sharing games, congestion games, potential games, fair reward allocation, worst-case

expected utility maximization, online games

I. INTRODUCTION

In this paper, we consider the following game with m ≥ 2 players numbered 1, 2, . . . ,m,

and n ≥ 2 resources numbered 1, 2, · · · , n. The game evolves in slotted time t ∈ {1, 2, . . . }.

The vector W (t) ∈ Rn denotes the random reward vector at time t ∈ {1, 2, . . . }. In particular,

for each i ∈ {1, 2, . . . , n} and each t ∈ {1, 2, . . . }, Wi(t) ≥ 0 denotes the reward offered by

resource i at time t. We assume that W (t) are i.i.d. with E{W (t)} = E = [E1, E2, . . . , En].

The authors are with the Electrical Engineering department at the University of Southern California.

This work was supported in part by one or more of: NSF CCF-1718477, NSF SpecEES 1824418.

June 2023 DRAFT

ar
X

iv
:2

40
2.

05
30

0v
4 

 [
cs

.G
T

] 
 1

4 
Fe

b 
20

25



2

The vector E is unknown to the players. During each time slot, each player selects r resources

without knowing the other player’s selections (assume that 0 < r ≤ n), and without knowledge

of W (t). During time slot t, for each k ∈ [1 : n], each player selecting resource k receives a

reward of Wk(t)/Sk(t) from resource k, where Sk(t) is the number of players choosing resource

k during time slot t. For each i ∈ {1, 2, . . . ,m}, let Ai(t) denote the set of resources chosen by

player i during time slot t. During time slot t, after the selection of resources, player i receives

(Wk(t), Sk(t)) for k ∈ Ai(t) as feedback.

The total reward received by player i during time slot t is
∑

k∈Ai(t)
Wk(t)/Sk(t). The time-

average expected reward of player i in a finite time horizon of T time slots is

1

T

T∑
t=1

E

 ∑
k∈Ai(t)

Wk(t)

Sk(t)

 . (1)

The goal is to design policies to maximize the time-average expected reward of player 1.

However, this is not possible since player 1 does not have control over the policies of the

other players. Hence, we focus on maximizing the worst-case time-average expected reward of

player 1, which we define in the sections below.

For k ∈ {1, 2, . . . , n} and t ∈ {1, 2, . . . }, define Xk(t) =
∑m

i=2 1[k∈Ai(t)]. Hence, Xk(t) is the

number of players (other than player 1) choosing resource k during time slot t. Also, we have

Sk(t) = 1[k∈A1(t)] +Xk(t). For each t, it can be shown that X(t) ∈ J , where

J =

{
x ∈ {0, 1, . . . ,m− 1}n

∣∣∣∣∣
n∑

j=1

xj = (m− 1)r

}
. (2)

Additionally, for a given t ∈ {1, 2, . . . }, it can be easily shown that for any x ∈ J , there exists

a way for players 2 to m to choose resources such that X(t) = x.

A. Time Average Expected Reward

Define H(t) = {(A1(τ), {Wk(τ), Sk(τ); 1 ≤ k ≤ n, k ∈ A1(τ)}); 1 ≤ τ < t}, the history

up to time t. Given H(t), the action of player 1 at time t is conditionally independent of

the other player’s actions at time t. Define the random vector p(t) with components pk(t) =

E{1[k∈A1(t)]|H(t)}. Since
∑n

k=1 1[k∈A1(t)] = r, it can be shown that p(t) ∈ ∆n,r, where ∆n,r is

the (n, r)-hypersimplex given by

∆n,r =

{
p ∈ Rn

+ :
n∑

i=1

pi = r, pi ∈ [0, 1] ∀i ∈ {1, 2, . . . , n}

}
. (3)
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Also, notice that given p ∈ ∆n,r, we can use the Madow’s sampling technique (see, for

example [1]) to sample an action set A ⊂ {1, 2, . . . , n} such that, |A| = r, and pk = E{1[k∈A]}

for each k ∈ {1, 2, . . . , n}.

Notice that we can write the time-average expected reward R(T ) of player 1 in a finite time

horizon of T time slots as

R(T ) =
1

T

T∑
t=1

n∑
k=1

E
{
Wk(t)1[k∈A1(t)]

1 +Xk(t)

}
=(a)

1

T

T∑
t=1

n∑
k=1

EkE
{
1[k∈A1(t)]

1 +Xk(t)

}

=
1

T

T∑
t=1

n∑
k=1

EkE

{
E

{
1[k∈A1(t)]

1 +Xk(t)

∣∣∣∣∣H(t)

}}

=(b)
1

T

T∑
t=1

n∑
k=1

EkE

{
E

{
1

1 +Xk(t)

∣∣∣∣∣H(t)

}
E
{
1[k∈A1(t)]|H(t)

}}

=
1

T

T∑
t=1

n∑
k=1

EkE

{
E

{
1

1 +Xk(t)

∣∣∣∣∣H(t)

}
pk(t)

}

=(c)
1

T

T∑
t=1

n∑
k=1

EkE
{

pk(t)

1 +Xk(t)

}
=

1

T

T∑
t=1

E{f(p(t),X(t))}, (4)

where (a) follows since W (t) is independent of the actions of players at time t, (b) follows

since 1[k∈A1(t)] is independent of Xk(t) conditioned on H(t), (c) follows since p(t) is an H(t)-

measurable random variable, and the function f : Rn
+ × Zn

+ → R is defined as

f(p,x) =
n∑

k=1

Ekpk
1 + xk

. (5)

The time-average expected reward of player 1 is

R := lim inf
T→∞

R(T ). (6)

B. Worst-Case Time Average Expected Reward

Notice that since player 1 does not have access to X(t) when taking action during time slot t,

they cannot directly maximize R defined in (6). But notice that for fixed p ∈ ∆n,r, the worst-case

value of f(p,x) is fworst(p), where

fworst(p) = min
x∈J

f(p,x). (7)
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Combining with (4), the worst-case time-average expected reward in a finite time horizon of T

time slots is given by

Rworst(T ) =
1

T

T∑
t=1

E{fworst(p(t))}. (8)

Hence, the worst-case time-average expected reward of player 1 is

Rworst = lim inf
T→∞

Rworst(T ). (9)

Instead of maximizing R, player 1 can take decisions to maximize Rworst without knowledge of

the decisions of other players.

From (8) and (9), we have that the maximum possible value of Rworst is fworst,∗, where

fworst,∗ = max
p∈∆n,r

min
x∈J

f(p,x) = max
p∈∆n,r

fworst(p), (10)

that is achieved by using the policy p(t) = p∗ in each time slot, where

p∗ ∈ arg max
p∈∆n,r

fworst(p). (11)

The fworst function is unknown to player 1 because the function f defined in (5) is in terms

of the unknown Ek values. Hence, we aim to design an algorithm that achieves a worst-case

time-average expected reward close to fworst,∗ using the bandit feedback.

Note: Notice that one can relax the constraint of each user choosing exactly r resources by

allowing each user to select at most r resources. Since the rewards are assumed to be nonnegative,

this will not affect fworst. To formalize this, following the same analysis as before, it can be

established that the worst-case expected utility in this case is

f̃worst,∗ = max
p∈∆̃n,r

min
x∈J̃

f(p,x), (12)

where

∆̃n,r =

{
p ∈ [0, 1]n :

n∑
i=1

pi ≤ r

}
(13)

and

J̃ =

{
x ∈ {0, 1, . . . ,m− 1}n :

n∑
j=1

xj ≤ (m− 1)r

}
. (14)

Now assume (p̃∗, x̃∗) achieves the maximin optimality for (12). Now consider any p̂∗ ∈ ∆n,r such

that p̂∗ ≥ p̃∗, where the inequality is taken entry-wise and let x̂ ∈ argminx∈J̃ f(p̂∗,x). Consider
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arbitrary x̂∗ ∈ J such that x̂∗ ≥ x̂. First notice that f(p̂∗, x̂∗) ≤ f(p̂∗, x̂), where the inequality

follows combining definition of f in (5) with x̂∗ ≥ x̂. Since, x̂ ∈ argminx∈J̃ f(p̂∗,x), the

above means x̂∗ ∈ argminx∈J̃ f(p̂∗,x). Now, notice that f(p̂∗, x̂∗) ≥ f(p̃∗, x̂∗) ≥ f(p̃∗, x̃∗),

where the first inequality follows combining definition of f in (5) with p̂∗ ≥ p̃∗ and the second

inequality follows since x̃∗ ∈ argminx∈J̃ f(p̃∗,x). Hence, the pair (p̂∗, x̂∗) is also a maximin

optimal point for (12). Since p̃∗ ∈ ∆n,r and x̂∗ ∈ J by definition, we have f̃worst,∗ = fworst,∗.

C. Related work

The main challenge of applying online optimization techniques such as online gradient de-

scent [2] to the above problem is due to the fact that we do not know the function f since

we do not know E. The problem shares certain similarities with the problems of multi-armed

bandit learning (MAB) [3], [4], adversarial bandit learning [5], [6], online-convex optimiza-

tion [7], online-convex optimization with multi-point bandit feedback [8], and stochastic convex

optimization [9].

Multi-armed bandit learning is extensively studied in the literature. The classical MAB problem

consists of a fixed number of arms each with fixed mean reward. A player chooses an arm in

each iteration of the game, without knowledge about the mean rewards, where after the choice

is made the reward of the chosen arm is revealed to the player. The goal is to learn to choose

the arm with the highest mean reward. An algorithm for the MAB problem has to explore all

the arms in order to learn the best arm. But in doing so, the player also chooses arms with low

mean reward, which affects the long term reward of the player. Upper confidence bound based

algorithms, where the algorithm maintains an upper bound on the mean cost of each arm, is a

popular in the MAB literature [10], [5]. Our problem cannot be addressed using classical MAB

approaches since the reward not only depends on the chosen resource, but also on the choices

of other players. Another related problem is adversarial bandit learning. Unlike the worst-case

approach, the adversarial bandit framework cannot be used to obtain utility guarantees for player

1 that are independent of the actions of the other players.

The framework of online optimization also shares similarities with our work since our goal is

to design an online algorithm to minimize fworst(p). However, notice that fworst depends on the

unknown vector E. We also do not have access to an unbiased estimate or an unbiased gradient

estimate of the function fworst due to its definition in (7). Hence, the work on online-convex
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optimization where partial information on the underlying reward functions are revealed, such

as online-convex optimization with multi-point bandit feedback, and the approaches based on

stochastic gradient descent are also not applicable. Our problem is more similar to the work

of [6] on zero-sum matrix games with bandit feedback. However, the above work considers a

two-player scenario where both players receive the actions and the rewards of themselves and

the opponent as feedback.

Our game model has been studied for the offline non-stochastic case with full information on

E under the more general framework of resource-sharing games [11], also known as congestion

games. In these games, the per-player reward of a resource is a general function of the number

of players selecting the resource. Also, an action for a player is a subset of the resources,

where the allowed subsets make up the player’s action space. Resource-sharing games have

also been extended to various stochastic settings [12], [13]. Problems similar to our work have

been studied in the context of adversarial resource-sharing games. The work of [14] considers an

adversarial resource-sharing game where each player chooses a single resource from a collection

of resources, after which an adversary chooses the resource chosen by the maximum number

of players. Also, non-atomic congestion games with malicious players have been considered

through the work of [15]. The above works assume that E is known to all the players.

We have simplified the general resource-sharing game model described above in two ways.

First, we assume a fair-reward allocation model, where we have assumed the existence of a

reward for each resource, which is divided equally between the players selecting it. Second, we

have assumed simple action spaces for players by allowing each player to select an arbitrary

subset of r resources. Resource-sharing games with special per-player reward definitions have

been considered in the literature. One such notable case is when the per-player reward of a

resource is nondecreasing in the number of players selecting the resource. These games are

called cost-sharing games [16]. The particular case when the total cost of a resource is divided

equally among the players choosing it is called fair cost-sharing games. In such a model, a

player would prefer to select resources selected by many players. In the fair reward allocation

model considered in our work, players have the opposite incentive to select resources selected

by a small number of players.

One application of our model is multiple access control (MAC) in communication systems,

where multiple users access communication channels, and the data rate of a channel is shared
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amongst the users who select it [17], [18], [19]. Here, a channel can be shared using Time

Division Multiple Access (TDMA) or Frequency Division Multiple Access (FDMA), where in

TDMA, the channel is time-shared among the users [20], [21], whereas in FDMA, the channel

is frequency-shared among the users [22]. In both cases, the total data rate supported by the

channel can be considered the reward of the channel. Here, limiting the number of channels

accessed by a single user in a given time slot is desirable. Additionally, the channel data rate

should be shared among the users accessing the channel.

The worst-case expected reward is an important objective different from Nash-equilibrium [23],

[24] and correlated equilibrium [25], [26], [27]. The problem of finding an approximate Nash

equilibrium of a congestion game with bandit feedback has been considered [28]. However,

implementing the algorithms by [28] requires cooperation among players. In contrast, the worst-

case approach requires no cooperation among the players. Additionally, player 1 does not have to

make assumptions about other players’ strategies. Hence, understanding the worst-case expected

reward is important even when the other players are not necessarily playing to hurt player 1.

However, in practice, some players play just to hurt others. One particular example arises in

military communications. Consider a multiple access communication system used in a military

setting (for instance, consider the TDMA scheme considered in [21], which has a similar structure

to our model). Here, some users may transmit to disrupt the communication capabilities of other

users. Our formulation is applicable even when the other users cooperate to reduce the data rate

of a single player. Another motivation for the worst-case objective of this paper is to quantify

the degree of punishment that can be inflicted on a particular user. This value is useful, for

example, in repeated game algorithms that design punishment modes into the strategy space in

order to discourage deviant behavior [29], [27].

D. Background on Resource-Sharing Games

The resource-sharing game was first studied by [11]. These games, also called congestion

games, fall under the general category of potential games [30]. In potential games, the effect of

any player changing policies is captured by the change of a global potential function. Various

extensions to the classical resource sharing game introduced by [11] have been studied in the

literature [31]. Some such extensions are stochastic resource-sharing games [12], [13], weighted

resource-sharing games [32], games with player-dependent reward allocation [33], games with
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resources having preferences over players [34], and singleton games, where each player is only

allowed to choose a single resource [35], [36].

Also similar to resource-sharing games are resource allocation games [37], [38]. In these

games, a resource must be fairly divided among claimants claiming a certain portion. There is also

work combining resource-sharing games with bandits and strategic experimentation. The work

of [39] considers a two-player game where players continually choose between their private risky

arm and a shared safe arm. Only one player can activate the safe arm at any given time, which

guarantees a payoff. This congestion effect on the safe arm gives rise to strategic consideration

among the players. These works are based on the model of multi-agent, multi-armed bandit

problems introduced by [40]. Here, multiple players are faced with the same multi-armed bandit

problem. In contrast to the classic single-agent setting, players can learn from other players’

feedback, resulting in some players being able to free-ride on other players’ experiments. This

phenomena induces strategic experimentation.

Resource-sharing games have applications in multiple-access [17], [41], [42], network selec-

tion [43], network design [44], spectrum sharing [45], resource sharing in wireless networks [46],

load balancing networks [47], radio access selection [48], service chains [49], and congestion

control [50]

E. Contributions

We study the problem of maximizing the worst-case time average expected reward of online

resource-sharing games with a fair-reward allocation model in the presence of bandit feedback

on the mean rewards of the resources. We assume a model where in each time slot, each player

is allowed to choose any r element subset of the n available resources, and the reward of a

resource is shared among the users selecting it. We propose a novel algorithm combining the

upper confidence bound technique with Madow’s sampling technique and Euclidean projection

onto the (n, r)-hypersimplex, to maximize the worst-case time average expected reward of player

1. In particular, in each time slot of the algorithm, we find p(t) in the (n, r)-hypersimplex, after

which we sample the r resources for player 1 using Madow’s sampling technique. The algorithm

gets within O(log(T )/
√
T ) of optimality in a finite time-horizon of T time slots. The parameters

of the algorithm do not depend on T . Hence, the above guarantee can be achieved even if the

time horizon T is unknown.
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F. Notation

We use calligraphic letters to denote sets. Vectors and matrices are denoted in boldface char-

acters. For integers n and m, we denote by [n : m] the set of integers between n and m inclusive.

Also, we use N = {1, 2, 3, . . . } to denote the set of positive integers and N0 = {0, 1, 2, . . . } to

denote the set of non-negative integers.

II. BANDIT ALGORITHM

Now, we move on to the algorithm and analysis. Before introducing the algorithm, we begin

with a few definitions and some preliminary results that are useful.

Our algorithm, provided in Algorithm 1 below, uses the first n time slots as an initial

exploration phase that obtains at least one sample of the reward of each of the n resources.

The main part of the algorithm starts in time slot n+ 1.

For all t ∈ {n + 1, n + 2, . . . } and k ∈ [1 : n] define nk(t) as the number of times player 1

chooses resource k before time slot t. Formally, nk(t) =
∑t−1

τ=1 1[k∈A1(τ)], where A1(t) denotes

the set of resources chosen by player 1 during time-slot t. Notice that due to initial exploration

phase of Algorithm 1, we have that nk(t) ≥ 1 for all k ∈ [1 : n] and t ∈ {n + 1, n + 2, . . . }.

For each t ∈ {n+ 1, n+ 2, . . . } and k ∈ [1 : n], define

Ēk(t) =
1

nk(t)

t−1∑
τ=1

1[k∈A1(τ)]Wk(τ). (15)

Fix δt ∈ (0, 1) for each t ∈ {n+1, n+2, . . . } such that δt ≥ δt+1 for all t ∈ {n+1, n+2, . . . }.

For each t ∈ {n+ 1, n+ 2, . . . } and k ∈ [1 : n], define

Ẽk(t) = Ēk(t) +

√
2 log nk(t)(nk(t)+1)

δt

nk(t)
. (16)

Also, define the functions ft : Rn × Nn
0 → R for t ∈ {n+ 1, n+ 2, . . . } as

ft(p,x) =
n∑

k=1

Ẽk(t)pk
1 + xk

. (17)

Before moving on to the main result, we introduce the following well-known lemma.

Lemma 1: Given a sequence {Xt}∞t=1 of independent zero-mean 1-sub Gaussian random

variables, a positive integer-valued random variable G (possibly dependent on the sequence
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{Xt}∞t=1) and ϵ ∈ (0, 1), we have

P

 1

G

G∑
i=1

Xi ≥

√
2 log G(G+1)

ϵ

G

 ≤ ϵ,P

 1

G

G∑
i=1

Xi ≤ −

√
2 log G(G+1)

ϵ

G

 ≤ ϵ. (18)

Proof: This result is given as an exercise in the book [5]. We include the proof for

completeness. Define X̄(t) = 1
t

∑t
τ=1Xτ for each t ∈ N. Notice that,

P

X̄(G) ≥

√
2 log G(G+1)

ϵ

G

 =
∞∑
g=1

P

X̄(g) ≥

√
2 log g(g+1)

ϵ

g
,G = g


≤(a)

∞∑
g=1

P

X̄(g) ≥

√
2 log g(g+1)

ϵ

g

 ≤(b)

∞∑
g=1

e−


√

2 log
g(g+1)

ϵ
g


2

2/g

=
∞∑
g=1

ϵ

g(g + 1)
=

∞∑
g=1

(
ϵ

g
− ϵ

g + 1

)
= ϵ (19)

where (a) follows since for any two events A,B, P (A,B) ≤ P (A), and (b) follows since X̄(g)

is 1/
√
g-sub-Gaussian. The other inequality follows from a similar argument.

Fix t ∈ {n + 1, n + 2, . . . } and k ∈ [1 : n]. For each s ∈ [1 : nk(t)], define W̃k(s) as the

reward obtained when the resource k is chosen for the s-th time by player 1. Hence, notice that

Ēk(t) =
1

nk(t)

∑nk(t)
s=1 W̃k(s).

Notice that from assumption A2, the collection {W̃k(s)−Ek}nk(t)
s=1 is a collection of independent

1-sub Gaussian random variables. Applying Lemma 1-(c) to the sequence {W̃k(t)−Ek}nk(t)
t=1 with

G = nk(t) and ϵ = δt, we have

P

 1

nk(t)

nk(t)∑
s=1

(W̃k(s)− Ek) ≥

√
2 log nk(t)(nk(t)+1)

δt

nk(t)

 ≤ δt, (20)

and

P

 1

nk(t)

nk(t)∑
s=1

(W̃k(s)− Ek) ≤ −

√
2 log nk(t)(nk(t)+1)

δt

nk(t)

 ≤ δt, (21)

The above two inequalities translate to,

P
{
Ek ≥ Ẽk(t)

}
≤ δt, (22)
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and

P

Ek ≤ Ẽk(t)− 2

√
2 log nk(t)(nk(t)+1)

δt

nk(t)

 ≤ δt. (23)

for all t ∈ {n+ 1, n+ 2, . . . } and k ∈ [1 : n], where Ẽk(t) is defined in (16).

Now consider the collection {Gn+1, Gn+2, . . . } of events that shall be called “good” events:

For t ∈ {n+ 1, n+ 2, . . . } the “good” event Gt is defined by the inequalities

Ek < Ẽk(t), (24)

and

Ek > Ẽk(t)− 2

√
2 log nk(t)(nk(t)+1)

δt

nk(t)
(25)

for k ∈ [1 : n]. Specifically, Gt is defined as the event that (24) and (25) hold for all k ∈ [1 : n].

Combining (23) and (22) with the union bound, we have that

P{Gc
t} ≤ 2nδt. (26)

Recall that

p∗ ∈ arg max
p∈∆n,r

fworst(p), (27)

where the function fworst is defined in (7). Let

x∗ ∈ argmin
x∈J

f(p∗,x), (28)

where the function f is defined in (5). Hence, we have that

fworst,∗ = f(p∗,x∗), (29)

where fworst,∗ is defined in (10). Before moving on to the Algorithm and the main theorem, we

first prove the following lemma.

Lemma 2: Fix t ∈ {n + 1, n + 2, . . . }. Assume that the “good” event Gt is true. Then we

have that

(a) ft(p
∗,x) ≥ f(p∗,x∗) for every x ∈ J , where ft is defined in (17), p∗ is defined in (27)

and x∗ is defined in (28).
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(b) Define

Dt = C + 2

√
2 log

t(t+ 1)

δt
, (30)

where

C = max
k∈[1:n]

Ek. (31)

We have that ∥∇pft(p,x)∥2≤ nD2
t for every p ∈ ∆n,r and x ∈ J .

Proof: We prove the two parts separately.

(a) We have that

ft(p
∗,x) =

n∑
k=1

Ẽk(t)p
∗
k

1 + xk

≥(a)

n∑
k=1

Ekp
∗
k

1 + xk

= f(p∗,x) ≥ f(p∗,x∗), (32)

where (a) follows since we are in the “good” event Gt (so (24) holds) and the last inequality

follows from the definition of x∗ in (28).

(b) First, notice that when we are in the event Gt, we have from (25) that,

Ẽk(t) < Ek + 2

√
2 log nk(t)(nk(t)+1)

δt

nk(t)
≤(a) C + 2

√
2 log

t(t+ 1)

δt
= Dt, (33)

for all k ∈ [1 : n], where (a) follows since Ek ≤ C by definition of C in (31), and

1 ≤ nk(t) ≤ t for t ∈ {n+ 1, n+ 2, . . . } by definition of nk(t). Hence,

∥∇pft(p,x)∥2=
n∑

k=1

Ẽ2
k(t)

(1 + xk)2
≤

n∑
k=1

Ẽ2
k(t) ≤ nD2

t . (34)

We summarize our approach in Algorithm 1. The algorithm relies on three key steps.

First, we assume that given p ∈ ∆n,r, we can sample a set A ⊂ [1 : n] such that |A| = r, and

E{1k∈A} = pk for all k ∈ [1 : n]. This can be solved using the Madow’s sampling technique ([1]).

In Appendix B, we provide the algorithm for completeness. The correctness of the algorithm is

established in [1].

Second, we assume we have an oracle that can compute a solution y ∈ argminx∈J
∑n

k=1
Fkpk
1+xk

,

where Fi ≥ 0 for all i ∈ [1 : n], and p = [p1, p2, . . . , pn] ∈ ∆n,r. This problem is nonconvex

due to the fact that J is a discrete set. Nevertheless, the problems of above type can be solved

explicitly (we describe a simple method in Appendix A).
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Finally, we assume that given x ∈ Rn
+, we can find the projection Π∆n,r(x) of x onto ∆n,r.

An algorithm for this task is given in Appendix 4 along with the analysis.

For our algorithm, we also require step size parameters βt for t ∈ {n+1, n+2, . . . } satisfying

βt ≥ βt+1 for all t ∈ {n+ 1, n+ 2, . . . }.

Algorithm 1: UCB based algorithm for worst-case maximization

1 for each time slot t ∈ [1 : n] do

2 Set A1(t) to be an arbitrary action set with A1(t) ⊂ [1 : n] satisfying |A1(t)| = r and

t ∈ A1(t).

3 Receive feedback {Wk(t); 1 ≤ k ≤ n, k ∈ A1(t)}.

4 end

5 Initialize p(n+ 1) ∈ ∆n,r.

6 for each time slot t ∈ {n+ 1, n+ 2, . . . , } do

7 Sample an action set A1(t) ⊂ [1 : n] using the Madow’s sampling technique such

that |A1(t)| = r, and pk(t) = E{1[k∈A1(t)]|p(t)} for each k ∈ [1 : n]. In particular,

given p(t), we sample the above action set independent of the past H(t) (see

Appendix B for the implementation).

8 Receive feedback {Wk(t); 1 ≤ k ≤ n, k ∈ A1(t)}.

9 Find Ēk(t), and Ẽk(t) for each k ∈ [1 : n] using (15) and (16), respectively.

10 Find x(t) by solving,

x(t) ∈ argmin
x∈J

ft(p(t),x) (35)

using Algorithm 2, where ft is defined in (17).

11 Obtain p(t+ 1) by using,

p(t+ 1) = Π∆n,r (p(t) + βt∇pft(p(t),x(t))) , (36)

where Π∆n,r(y) denotes the projection of y onto ∆n,r (See Appendix 4 for an

algorithm) and βt is the step size parameter.
12 end
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A. Analysis of the Algorithm

In this section, we focus on establishing performance of Algorithm 1.

Theorem 1: Fix T ∈ {n+ 2, n+ 3, . . . }.

(a) Running the UCB based worst-case maximization algorithm in Algorithm 1 for T time

slots with βt > 0 such that βt ≥ βt+1 and δt ∈ (0, 1) such that δt ≥ δt+1 for all t ∈

{n+ 1, n+ 2, . . . } yields

fworst,∗ −Rworst(T ) ≤ n

2βTT
+

nrC

T
+

nD2
T

∑T
t=n+1 βt

2T
+ 4

√
2nr log T (T+1)

δT

T

+
1

T

T∑
t=n+1

(
2rC +

n

βt

)
nδt, (37)

where Rworst(T ) is the time-average worst case expected reward achieved by the algorithm

(See (8)), C is defined in (31), and DT is defined in (30). Notice that the algorithm does

not require the knowledge of T . Hence, the algorithm can be implemented in a setting

where the time horizon is unknown.

(b) Running the UCB based worst-case maximization algorithm for T time slots with δt =

Θ(1/t) and βt = Θ(1/
√
t) for all t ∈ {n+ 1, n+ 2, . . . }, we have that

fworst,∗ −Rworst(T ) ≤ Θ

(
log(T )√

T

)
. (38)

Proof: We will first prove part-(a).

(a) Fix any t ∈ {n + 1, . . . , T} and assume the “good” event Gt holds. Lemma 2 implies

∥∇pft(p(t),x(t))∥2≤ nD2
t ≤ nD2

T , where the first inequality follows from Lemma 2-(b) and

the second inequality follows since Dt ≤ DT for all t ∈ {n + 1, . . . , T} (see the definition of

Dt in (30) and use the fact that δt ≥ δT for all t ∈ {n+ 1, . . . , T}). Also, we have

ft(p
∗,x(t)) ≥ f(p∗,x∗) = fworst,∗, (39)

where x(t) is defined in (35), ft is defined in (17), the first inequality follows from Lemma 2-(a)

and the last equality follows from (29). Define x̃(t) ∈ argminx∈J f(p(t),x). Thus

f(p(t), x̃(t)) = fworst(p(t)) (40)

by the definition of fworst in (7). Due to the definition of x(t) in (35), we have

ft(p(t),x(t)) ≤ ft(p(t), x̃(t)). (41)
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Also, notice that

ft(p(t), x̃(t)) =(a)

n∑
k=1

Ẽk(t)pk(t)

1 + x̃k(t)
=

n∑
k=1

Ekpk(t)

1 + x̃k(t)
+

n∑
k=1

[Ẽk(t)− Ek]pk(t)

1 + x̃k(t)

=(b) f
worst(p(t)) +

n∑
k=1

[Ẽk(t)− Ek]pk(t)

1 + x̃k(t)

≤(c) f
worst(p(t)) +

n∑
k=1

 2pk(t)

1 + x̃k(t)

√
2 log nk(t)(nk(t)+1)

δt

nk(t)


≤(d) f

worst(p(t)) + 2
n∑

k=1

pk(t)

√
2 log T (T+1)

δT

nk(t)

 (42)

where (a) follows from the definition of ft in (17); (b) follows from (40); (c) follows since

we assume the “good” event Gt holds (hence, the inequality (25) is true); (d) follows since

nk(t) ≤ T , δt ≥ δT for all t ∈ {n+ 1, . . . , T}, and x̃k(t) ≥ 0 for all k ∈ [1 : n]. Since p(t+ 1)

is defined in (36) as the projection of p(t) + βt∇pft(p(t),x(t)) onto the convex set ∆n,r, we

have that,

∥p(t+ 1)− p∗∥2 ≤(a) ∥p(t) + βt∇pft(p(t),x(t))− p∗∥2

≤ ∥p(t)− p∗∥2 + β2
t ∥∇pft(p(t),x(t))∥2−2βt(p

∗ − p(t))⊤∇pft(p(t),x(t))

=(b) ∥p(t)− p∗∥2 + β2
t ∥∇pft(p(t),x(t))∥2−2βt(ft(p

∗,x(t))− ft(p(t),x(t)))

≤(c) ∥p(t)− p∗∥2 + nβ2
tD

2
T − 2βtf

worst,∗ + 2βtft(p(t), x̃(t)))

≤(d) ∥p(t)− p∗∥2 + nβ2
tD

2
T + 4βt

n∑
k=1

pk(t)

√
2 log T (T+1)

δT

nk(t)


− 2βtf

worst,∗ + 2βtf
worst(p(t)) (43)

where (a) follows since projection onto the convex set ∆n,r reduces the distance to any point in

the set, (b) follows from the subgradient equality for the linear function ft(·,x(t)), (c) follows

from (39) and (41), and (d) follows from (42).

Hence, we have that for all t ∈ {n+ 1, . . . , T}, given that the “good” event Gt is true

2fworst,∗ − 2fworst(p(t))− 1

βt

∥p(t)− p∗∥2 + 1

βt

∥p(t+ 1)− p∗∥2

≤ nβtD
2
T + 4

n∑
k=1

pk(t)

√
2 log T (T+1)

δT

nk(t)

 (44)
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Notice that

pk(t) =(a) E{1[k∈A1(t)]|p(t)} =(b) E{1[k∈A1(t)]|p(t),H(t)}

=(c) E{1[k∈A1(t)]|H(t)}, (45)

where (a) follows due to the sampling of the set A1(t) in line 7 of Algorithm 1, (b) follows

because the action set A1(t) is sampled independent of the history H(t) given p(t) (see line 7

of Algorithm 1), and (c) follows since p(t) is H(t)-measurable.

Now we take the expectation (Conditioned on the event Gt) of both sides of (44) which gives,

E

{
2fworst,∗ − 2fworst(p(t))− 1

βt

∥p(t)− p∗∥2 + 1

βt

∥p(t+ 1)− p∗∥2
∣∣∣∣∣Gt

}

≤ nβtD
2
T + 4E


n∑

k=1

pk(t)

√
2 log T (T+1)

δT

nk(t)

∣∣∣∣∣Gt


≤ nβtD

2
T +

4

P{Gt}
E


n∑

k=1

pk(t)

√
2 log T (T+1)

δT

nk(t)


=(a) nβtD

2
T +

4

P{Gt}
E


n∑

k=1

E{1[k∈A1(t)]|H(t)}

√
2 log T (T+1)

δT

nk(t)


=(b) nβtD

2
T +

4

P{Gt}
E

E


n∑

k=1

1[k∈A1(t)]

√
2 log T (T+1)

δT

nk(t)

∣∣∣∣∣H(t)




= nβtD
2
T +

4

P{Gt}
E

E

 ∑
j:j∈A1(t)

√
2 log T (T+1)

δT

nj(t)

∣∣∣∣∣H(t)




= nβtD
2
T +

4

P{Gt}
E

 ∑
j:j∈A1(t)

√
2 log T (T+1)

δT

nj(t)

 (46)

where (a) follows from (45) and (b) follows since nk(t) is H(t)-measurable. Hence, we have

that for t ∈ {n+ 1, . . . , T}

E {2fworst,∗ − 2fworst(p(t))|Gt} ≤ 1

βt

E{∥p(t)− p∗∥2|Gt} −
1

βt

E{∥p(t+ 1)− p∗∥2|Gt}

+ nβtD
2
T +

4

P{Gt}
E

 ∑
j:j∈A1(t)

√
2 log T (T+1)

δT

nj(t)

 . (47)
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Now, notice that

E{∥p(t+ 1)− p∗∥2|Gt}P{Gt} = E{∥p(t+ 1)− p∗∥2} − E{∥p(t+ 1)− p∗∥2|Gc
t}P{Gc

t}

≥ E{∥p(t+ 1)− p∗∥2} − nP{Gc
t}, (48)

where the last inequality follows from ∥p(t+ 1)− p∗∥2 ≤ n (since p(t+ 1),p∗ ∈ ∆n,r). Next,

notice that

fworst,∗ =
n∑

k=1

p∗kEk

1 + x∗
k

≤
n∑

k=1

p∗kC = rC, (49)

where the first equality follows from (29), the inequality follows from the definition of C in

(31) and the fact that x∗
k ≥ 0 for all k ∈ [1 : n], and the last equality follows since p∗ ∈ ∆n,r

(see (27)). Hence,

E {2fworst,∗ − 2fworst(p(t))|Gc
t} ≤ 2fworst,∗ ≤ 2rC, (50)

where the last inequality follows from (49). Notice that,

E{2fworst,∗ − 2fworst(p(t))}

= E{2fworst,∗ − 2fworst(p(t))|Gt}P{Gt}+ E{2fworst,∗ − 2fworst(p(t))|Gc
t}P{Gc

t}

≤(a)
1

βt

E{∥p(t)− p∗∥2|Gt}P{Gt} −
1

βt

E{∥p(t+ 1)− p∗∥2|Gt}P{Gt}+ nβtD
2
TP{Gt}

+ 4E

 ∑
j:j∈A1(t)

√
2 log T (T+1)

δT

nj(t)

+ 2rCP{Gc
t}

≤(b)
1

βt

E{∥p(t)− p∗∥2} − 1

βt

E{∥p(t+ 1)− p∗∥2}+ n

βt

P{Gc
t}+ nβtD

2
T

+ 4E

 ∑
j:j∈A1(t)

√
2 log T (T+1)

δT

nj(t)

+ 2rCP{Gc
t}

≤(c)
1

βt

E{∥p(t)− p∗∥2} − 1

βt

E{∥p(t+ 1)− p∗∥2}+ nβtD
2
T

+ 4E

 ∑
j:j∈A1(t)

√
2 log T (T+1)

δT

nj(t)

+ 2

(
2rC +

n

βt

)
nδt, (51)

where (a) follows from (47) and (50), (b) follows since E{X|Y }P{Y } ≤ E{X} for a positive

valued random variable X and (48), and (c) follows from (26). Now, we sum (51) for t ∈
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{n+ 1, . . . , T} to get

E

{
2(T − n)fworst,∗ − 2

T∑
t=n+1

fworst(p(t))

}

≤ E{∥p(n+ 1)− p∗∥2}
βn+1

+
T∑

t=n+2

[
1

βt

− 1

βt−1

]
E{∥p(t)− p∗∥2} − E{∥p(T + 1)− p∗∥2}

βT+1

+ nD2
T

T∑
t=n+1

βt + 4
T∑

t=n+1

E

 ∑
j:j∈A1(t)

√
2 log T (T+1)

δT

nj(t)

+
T∑

t=n+1

2

(
2rC +

n

βt

)
nδt

≤(a)
n

βn+1

+
T∑

t=n+2

n

[
1

βt

− 1

βt−1

]
+ nD2

T

T∑
t=n+1

βt + 4
T∑

t=n+1

E

 ∑
j:j∈A1(t)

√
2 log T (T+1)

δT

nj(t)


+

T∑
t=n+1

2

(
2rC +

n

βt

)
nδt

=
n

βT

+ nD2
T

T∑
t=n+1

βt + 4
T∑

t=n+1

E

 ∑
j:j∈A1(t)

√
2 log T (T+1)

δT

nj(t)

+
T∑

t=n+1

2

(
2rC +

n

βt

)
nδt (52)

where (a) follows since 1/βt − 1/βt−1 ≥ 0 for all t ∈ {n+ 2, . . . , T} and ∥p(t)− p∗∥2 ≤ n for

all t ∈ {n+ 1, . . . , T} (since p(t),p∗ ∈ ∆n,r). Now, notice that

T∑
t=n+1

E

 ∑
j:j∈A1(t)

√
2 log T (T+1)

δT

nj(t)

 = E


n∑

k=1

T∑
t=n+1

k:k∈A1(t)

√
2 log T (T+1)

δT

nk(t)


= E


n∑

k=1

nk(T )∑
j=nk(n+1)

√
2 log T (T+1)

δT

j

 ≤ E


n∑

k=1

nk(T )∑
j=1

√
2 log T (T+1)

δT

j


≤(a) 2E


n∑

k=1

√
2nk(T ) log

T (T + 1)

δT

 ≤(b) 2

√
2n log

T (T + 1)

δT

√√√√ n∑
k=1

nk(T )

≤(c) 2

√
2nrT log

T (T + 1)

δT
, (53)

where (a) follows from
∑l

j=1

√
j
−1 ≤ 2

√
l, (b) follows since

∑n
k=1

√
nk(T ) ≤

√
n
∑n

k=1 nk(T ),

and (c) follows since
∑n

k=1 nk(T ) = r(T − 1) ≤ rT . Substituting above in (52), we have that

E

{
2(T − n)fworst,∗ − 2

T∑
t=n+1

fworst(p(t))

}
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≤ n

βT

+ nD2
T

T∑
t=n+1

βt + 8

√
2nrT log

T (T + 1)

δT
+

T∑
t=n+1

2

(
2rC +

n

βt

)
nδt (54)

For t ∈ [1 : n], define p(t) as pk(t) = 1[k∈A1(t)]. This definition is consistent with the

definition of p(t) for t ∈ {n+ 1, . . . }, since A1(t) is deterministic for t ∈ [1 : n] (see lines 1-4

of Algorithm 1). Hence,

E

{
2nfworst,∗ − 2

n∑
t=1

fworst(p(t))

}
≤ 2nfworst,∗ ≤ 2nrC, (55)

where the last inequality follows from (49). Adding (54) and (55), and dividing by 2T , we have

that

E

{
fworst,∗ − 1

T

T∑
t=1

fworst(p(t))

}
≤ n

2βTT
+

nrC

T
+

nD2
T

∑T
t=n+1 βt

2T

+ 4

√
2nr log T (T+1)

δT

T
+

1

T

T∑
t=n+1

(
2rC +

n

βt

)
nδt. (56)

Using the definition of Rworst(T ) defined in (8) in the above, we are done.

(b) To prove the (b), consider δt = Θ(1/t) and βt = Θ(1/
√
t) for all t ∈ {n+1, n+2, . . . }. We

analyze each term in the right hand side of the bound obtained in part-(a). Notice that n
2βTT

is

Θ(1/
√
T ), nrC

T
is Θ(1/T ), and

√
2nr log

T (T+1)
δT

T
is Θ(

√
log(T )/T ). We will analyze the remaining

two terms separately. For simplicity, we will use δt = 1/t and βt = 1/
√
t. First,

nD2
T

∑T
t=n+1 βt

2T
=(a)

n

2T

(
C + 2

√
2 log T 2(T + 1)

)2 T∑
t=n+1

1√
t

≤(b)
n√
T

(
C + 2

√
2 log T 2(T + 1)

)2
= Θ

(
log(T )√

T

)
, (57)

where (a) follows from the definition of DT in (30) and for (b) we have used
∑l

k=1 1/
√
k ≤ 2

√
l.

Next,

1

T

T∑
t=n+1

(
2rC +

n

βt

)
nδt =

1

T

T∑
t=n+1

(
2rnC

t
+

n2

√
t

)
≤ 1

T

T∑
t=1

(
2rnC + n2

√
t

)
≤(a)

4rnC + 2n2

√
T

= Θ

(
1√
T

)
, (58)

where for (a) we have used
∑l

k=1 1/
√
k ≤ 2

√
l. Combining the terms, we are done.
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III. FINDING fWORST,∗ WITH KNOWN E

If E is known, given p ∈ ∆n,r, the problem of finding fworst(p) has been well studied in the

literature. In particular, we can find x∗ ∈ argminx∈J f(p,x). In Appendix A, we provide the

algorithm for completeness. Hence, we can use standard min-max optimization techniques such

as min-oracle algorithm [51] to find fworst,∗ and p∗. Also, since J is a finite set, and the function

f is concave in the first argument, from the Danskin’s theorem [52], we can easily calculate a

subgradient of fworst at p ∈ ∆n,r as

∇pf
worst(p) = ∇pf(p,x

∗), (59)

where x∗ ∈ argminx∈J f(p,x). Hence, we can also use standard subgradient descent with

Euclidean projections onto ∆n,r (see Algorithm 4 to project onto ∆n,r) to find fworst,∗.

The work of [53] finds fworst,∗ and p∗ explicitly for the case m = 2, r = 1. We discuss the

solution of this case in Section III-A. In Section III-B, we extend this to the case m = 3, r = 1.

These explicit solutions provide a fast way to find fworst,∗ and provide insight into the structure

of optimal p∗. We also, provide a partial solution for the case m = 2 with general n, r in

Section III-C. In this section, we assume, without loss of generality, that Ek > 0 for all 1 ≤ k ≤ n

since otherwise, we can transform the problem into a lower dimensional version. Without loss

of generality, we also assume that Ek ≥ Ek+1 for 1 ≤ k ≤ n − 1. Before moving on to the

cases, we state the well-known Lagrange multiplier lemma, which will be useful in constructing

the solution for both cases. We first state a lemma that is useful for the proof.

Lemma 3: Consider the following constrained optimization problem,

max
x

z0(x)

s.t. zi(x) ≥ 0 for i ∈ {1, 2, . . . , k},

x ∈ Y ,

(60)

where zi : Rn → R for i ∈ {0, 1, 2, . . . , k}, and Y ⊂ Rn. Consider the following unconstrained

problem for some µ ≥ 0.

max
x

z0(x) +
k∑

i=1

µizi(x)

s.t. x ∈ Y .

(61)

Let x∗ be a solution to the unconstrained problem. Assume x∗ satisfies for all i ∈ {1, 2, . . . , k},
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(a) zi(x
∗) ≥ 0 (That is x∗ is feasible for the constrained problem)

(b) µi > 0 implies zi(x
∗) = 0.

Then x∗ is optimal for the constrained problem.

Proof: The proof of the lemma is immediate and omitted for brevity.

A. r = 1, m = 2

For this section, we use the notation ∆n for ∆n,1. This is solved in [54]. The solution is given

by, p∗ where,

p∗k =


1

Ek

(∑v
j=1

1
Ej

) if k ≤ v,

0 otherwise,

(62)

and,

v = arg max
1≤k≤n

k − 1
2∑k

j=1
1
Ej

, (63)

See [54] for the proof.

Notice that J is the set of standard unit vectors. Assume player 1 follows the worst-case

policy given by p∗ in (62). It can be shown that x∗ given by x∗
1 = 1 and x∗

i = 0 for all

i ∈ [2 : n] satisfies x∗ ∈ argminx∈J f(p∗,x). Lemma 4 shows the x∗ is also the best response

of Player 2 for Player 1. Hence, player 2 has no incentive to deviate from the policy x∗, given

that player 1 uses p∗. Notice that this may not be a Nash equilibrium since p∗ may not be the

best response of player 1 to x∗. However, this property incentivizes player 2 to use x∗ as the

strategy, even if they do not care about hurting player 1. For general m, r, given that player 1

is using strategy p∗, the above raises the question of whether the strategies of players [2 : m]

that gives the worst-case to p∗ are also the best responses to the other players. It turns out this

is not true in general. Particularly, when m > 2, players [2 : m] will focus on increasing the

congestion of resources with high mean rewards to reduce the expected reward of player 1. In

such a scenario, a player in [2 : m] may increase their reward by switching to a resource with

a less mean reward and less congestion. However, there are special cases in which the above

property is true even when m > 2. One such example is discussed in the case m = 3, r = 1.

Lemma 4: Consider the special case m = 2, r = 1 with n ∈ N satisfying n ≥ 2. Without loss

of generality, assume that E satisfies Ek ≥ Ek+1 for all k ∈ [1 : n− 1]. Let p∗ ∈ ∆n denote the
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worst-case strategy of player 1 defined in (62). Then x∗ defined by,

x∗
i =

 1 if i = 1

0 otherwise.
(64)

satisfies x∗ ∈ argminx∈J f(p∗,x). Hence, given that player 1 uses strategy p∗, player 2 can

use x∗ to enforce the worst-case for player 1. Additionally the strategy profile (p∗,x∗) has

the property that player 2 cannot increase their reward by unilaterally switching to a different

strategy q ∈ ∆n.

Proof: Define C = 1∑v
j=1

1
Ej

, where v is defined in (63). It can be easily shown that the

worst-case for player 1 occurs when player 2 chooses resource 1 with probability 1 (player 2 uses

strategy x∗). The expected reward of player 2 under this profile is p∗1E1

2
+(1− p∗1)E1 = E1 − C

2
.

Consider the scenario where player 2 switches to a different policy q ∈ ∆n. Under the profile

(p∗, q), the expected reward of player 2 is

h(q) =
v∑

j=1

qj

(
p∗jEj

2
+ (1− p∗j)Ej

)
+

n∑
j=v+1

qjEj

=
v∑

j=1

qj

(
Ej −

C

2

)
+

n∑
j=v+1

qjEj. (65)

We establish that h(q) ≤ h(x∗) for all q ∈ ∆n.

Throughout the proof, let us call the property Ek ≥ Ek+1 for k ∈ [1 : n − 1] to be the

nondecreasing property. We consider two cases. First, if v = n, notice that

h(q) =
n∑

j=1

qj

(
Ej −

C

2

)
≤

n∑
j=1

qj

(
E1 −

C

2

)
=

(
E1 −

C

2

)
= h(x∗), (66)

where the inequality follows from the nondecreasing property.

Hence, we are done. Now, consider the case v < n. Hence, from the definition of v in (63),

we have v− 1
2∑v

k=1
1

Ek

≥ v+ 1
2∑v+1

k=1
1

Ek

. This inequality simplifies to(
v − 1

2

)
Ev+1

≥
v∑

k=1

1

Ek

≥ v

E1

. (67)

where the last inequality follows from the nondecreasing property. We also have

C =
1∑v

k=1
1
Ek

≤ E1

v
. (68)
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where the inequality follows from the nondecreasing property. Hence,

h(q) =
v∑

j=1

qj

(
Ej −

C

2

)
+

n∑
j=v+1

qjEj ≤

(
v∑

j=1

qj

)(
E1 −

C

2

)
+

(
n∑

j=v+1

qj

)
Ev+1

=

(
v∑

j=1

qj

)(
E1 −

C

2

)
+

(
n∑

j=v+1

qj

)(
Ev+1 −

C

2
+

C

2

)

≤(a)

(
v∑

j=1

qj

)(
E1 −

C

2

)
+

(
n∑

j=v+1

qj

)(
E1

(
v − 1

2

)
v

− C

2
+

E1

2v

)
= h(x∗),

where (a) follows due to (67) and (68).

B. r = 1, m = 3

This section finds p∗ for the case m = 3, r = 1 where n is a positive integer and E =

[E1, . . . , En] is known. Define

p∗ ∈ arg min
p∈∆n

fworst(p), (69)

fworst(p) = min
x∈J

f(p,x), (70)

and

f(p,x) =
n∑

k=1

pkEk

1 + xk

. (71)

Notice that in this case we have

J =

{
x ∈ {0, 1, 2}n

∣∣∣∣∣
n∑

j=1

xj = 2

}
. (72)

We will use the notation ∆n for ∆n,1. We first focus on solving the problem minx∈J f(p,x)

for given p ∈ ∆n.

Lemma 5: Consider the special case m = 3, r = 1 with n ∈ N satisfying n ≥ 2, and a fixed

p ∈ ∆n. Let a = argmax1≤i≤n Eipi, and b = argmax1≤i≤n,i̸=aEipi, where we assume that

argmax returns the least index in the case of ties. Define the two vectors x1,x2 ∈ J , where

x1
k =

 2 if k = a,

0 otherwise,
(73)
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and

x2
k =

 1 if k ∈ {a, b},

0 otherwise.
(74)

Then x∗ ∈ argminx∈J f(p,x) can be given in two cases.

Case 1: Eapa ≥ 3Ebpb: We have x∗ = x1.

Case 2: Eapa < 3Ebpb: We have x∗ = x2.

Proof: Since x∗ ∈ J , we know x∗ has nonnegative components that sum to 2. If x∗ has

only one nonzero component at some index k ∈ {1, . . . , n}, then x∗
k = 2 and f is minimized by

choosing k = a, so assignment (73) holds.

Else, x∗ has exactly two nonzero components at indices k, j ∈ {1, 2, . . . , n} (k ̸= j) and f is

minimized by choosing k = a and j = b, so assignment (74) holds. It remains to compare (73)

and (74).

Under (73):

f(p,x) =
paEa

3
+ pbEb +

∑
k ̸∈{a,b}

pkEk =
n∑

k=1

pkEk −
2paEa

3
. (75)

Under (74):

f(p,x) =
paEa

2
+

pbEb

2
+
∑

k ̸∈{a,b}

pkEk =
n∑

k=1

pkEk −
paEa

2
− pbEb

2
(76)

Comparing the two cases, we have that for assignment (73), we require Eapa ≥ 3Ebpb and for

assignment (74), we require Eapa < 3Ebpb. Hence, we are done.

Now state the solution of m = 3, r = 1 as a Theorem, after which we move on to the proof.

Theorem 2: Consider the special case m = 3, r = 1 with n ∈ N satisfying n ≥ 2. Without

loss of generality, assume that E satisfies Ek ≥ Ek+1 for all k ∈ [1 : n − 1]. Define the two

sequences (Ui; 1 ≤ i ≤ n) and (Vi; 2 ≤ i ≤ n) according to

Ui =
i

3
E1

+
∑i

k=2
1
Ek

(77)

and

Vi =
i− 1∑i
k=1

1
Ek

. (78)
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Let u = argmax1≤i≤n Ui, and v = argmax2≤i≤n Vi, where argmax returns the least index in

the case of ties. Then, p∗ can be described under two cases.

Case 1: If Vv > Uu,

p∗k =


1

Ek∑v
j=1

1
Ej

if 1 ≤ k ≤ v

0 otherwise.
(79)

Case 2: If Uu ≥ Vv,

p∗k =



3
E1

3
E1

+
∑u

j=2
1
Ej

if k = 1

1
Ek

3
E1

+
∑u

j=2
1
Ej

if 2 ≤ k ≤ u

0 otherwise.

(80)

Before moving on to the proof of the theorem, we discuss the result. It is interesting to note the

variation of choice probabilities in both cases of the theorem. In the first scenario, while choosing

a collection of resources with the highest mean rewards with nonzero probability is optimal, one

chooses resources with lower mean rewards with higher probability within the collection. In

particular, player 1 first chooses a set of resources [1 : v] to be chosen with nonzero probability.

Then player 1 assigns probability p∗k for k ∈ [1 : v] such that the p∗kEk = C for some constant

C. This behavior can be explained as follows. First, player 1 never chooses resources with mean

rewards below a certain threshold. Second, within the collection of resources with relatively

high mean rewards, player 1 is tempted to choose resources with lower mean rewards with

high probability since, in the worst case, opponents choose the rewards with the highest mean

rewards.

In Case 2, a similar behavior can be observed. Player 1 first chooses a set of resources [1 : u] to

be chosen with nonzero probability. However, now player 1 assigns probability p∗k for k ∈ [1 : u]

such that p∗kEk = D for each k ∈ [2 : u] and p∗1E1 = 3D for some constant D. In particular,

player 1 chooses the first resource with a higher probability. To see this clearly, consider the

two scenarios in Fig. 1, where we consider two possibilities of E for n = 10 (Scenario 1

and Scenario 2). Fig. 1-Left denotes the plot of E for the two scenarios. Although in the two

scenarios, E is different only in E1 by 0.1, Scenario 1 belongs to Case 1 of Theorem 2, whereas

Scenario 2 belongs to Case 2. Fig. 1-Right shows the higher choice probability of resource 1 in
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Scenario 2. Here, the mean reward of the first resource is high enough to give a high per-player

reward even if many players select it. However, the mean reward is insufficient for player 1 to

choose it with probability 1.

Notice that in both scenarios, we have 1 ∈ argmax1≤i≤nEip
∗
i , and 2 ∈ argmax1≤i≤n,i ̸=1Eip

∗
i .

Also, since Scenario 1 belongs to Case 1 of Theorem 2, we have p∗1E1 < 3p∗2E2. Hence, from

Lemma 5, we have x∗ ∈ J given by x∗
i = 1 if i ∈ {1, 2} and x∗

i = 0 if i ∈ [3 : n] satisfies

x∗ ∈ argminx∈J f(p∗,x). Hence, the worst-case for player 1 occurs when player 2 always

chooses resource 1 and player 3 always chooses resource 2 (or vice versa). Using a similar

argument, one can establish that in Scenario 2, the worst-case for player 1 occurs when player

2 and player 3 always choose resource 1.

Assuming player 1 plays the strategy p∗, (worst-case strategy) and the other two players play

the strategies that give the worst-case to p∗, the expected reward vector of the three players

in Scenario 1 is (4.52, 7.87, 5.57). In the above strategy profile, the strategies of players 2 and

3 are the best responses for the other two players. In fact this property holds more generally

(m = 3, r = 1, and the solution comes from Case 1 of Theorem 2) as proven in Lemma 6.

Hence, it makes sense for players 2 and 3 to play the above strategy even if they do not intend to

penalize player 1. However, in Scenario 2, the same vector is (4.54, 3.79, 3.79). Here, players 2

and 3 can improve their expected reward by unilaterally deviating. Hence, in this case, the only

motivation for players 2 and 3 to play the above strategy is to hurt player 1. Also, in Scenario

2, when all three players play the worst-case strategy p∗, each can increase the expected reward

to 4.98.

Lemma 6: Consider the special case m = 3, r = 1 with n ∈ N satisfying n ≥ 2. Without

loss of generality, assume that E satisfies Ek ≥ Ek+1 for all k ∈ [1 : n− 1]. Consider the two

sequences (Ui; 1 ≤ i ≤ n) and (Vi; 2 ≤ i ≤ n), and the indices v, u defined in Theorem 2 and

assume Vv > Uu. Let p∗ ∈ ∆n denote the worst-case strategy of Player 1 defined in (79). Then

x2,x3 defined by,

x2
i =

 1 if i = 1

0 otherwise.
(81)
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Fig. 1. Left: The mean rewards of the resources, Right: Probabilities of choosing the resources

and

x3
i =

 1 if i = 2

0 otherwise.
(82)

satisfies x2 + x3 ∈ argminx∈J f(p∗,x). Hence, given that Player 1 uses strategy p∗, Players 2

and Players 3 can use decisions x2,x3 to enforce the worst-case for Player 1. Additionally the

strategy profile (p∗,x2,x3) has the following property. Players j ∈ {2, 3} cannot increase their

reward by unilaterally switching to a different strategy q ∈ ∆n.

Proof: The first part follows by applying Lemma 5 (recall that we assumed the solution

comes from case 2 of Theorem 2). We move on to the second part. Define C = 1∑v
k=1

1
Ek

, where

v is defined in Theorem 2. We first prove five claims that are useful in the solution.

Throughout the proof, let us call the property Ek ≥ Ek+1 for k ∈ [1 : n − 1] to be the

nondecreasing property.

Claim 1: C ≤ E1

v

Proof: Notice that

C =
1∑v

k=1
1
Ek

≤ 1∑v
k=1

1
E1

=
E1

v
(83)

where the inequality follows from the nondecreasing property.

Claim 2: If v < n, E1(v−1)
v

≥ Ev+1
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Proof: Notice that from the definition of v, we have that Vv ≥ Vv+1 which is,

v − 1∑v
k=1

1
Ek

≥ v∑v+1
k=1

1
Ek

. (84)

Simplifying this gives

v − 1

Ev+1

≥
v∑

k=1

1

Ek

≥ v

E1

, (85)

where the last inequality follows from the nondecreasing property.

Claim 3: E1(v−1)
2v−3

≤ E2

Proof: Notice that from the definition of v, we have that Vv ≥ Uv which is,,

v − 1∑v
k=1

1
Ek

≥ v
3
E1

+
∑v

k=2
1
Ek

. (86)

Simplifying this gives

2v − 3

E1

≥
v∑

k=2

1

Ek

≥ v − 1

E2

(87)

where the last inequality follows from the nondecreasing property.

Claim 4: E2(2v−3)
2v−2

≥ Ev+1.

Proof: Notice that from the definition of v, we have that Vv ≥ Vv+1 which is,

v − 1∑v
k=1

1
Ek

≥ v∑v+1
k=1

1
Ek

. (88)

Simplifying this gives

v − 1

Ev+1

≥
v∑

k=1

1

Ek

≥(a)
1

E1

+
v − 1

E2

≥(b)
1

E2

(
v − 1

2v − 3
+ v − 1

)
(89)

where (a) follows from the nondecreasing property, and (b) follows from Claim 3. Simplifying

the above ineqaulity, we have the result.

Claim 5: E2

v−1
≥ C.

Proof: Notice that

C =
1∑v

k=1
1
Ek

≤ 1∑v
k=2

1
Ek

≤ 1∑v
k=2

1
E2

=
E2

v − 1
(90)

where the last inequality follows from the nondecreasing property.
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Now, we are ready to prove the result. First consider the scenario where the three players

use the strategy profile (p∗, q,x3), where p∗,x3 are defined in the statement of the lemma and

q ∈ ∆n. Then the expected reward h2(q) of player 2 is

h2(q)

= q1

(
p∗1E1

2
+ (1− p∗1)E1

)
+ q2

(
p∗2E2

3
+

(1− p∗2)E2

2

)
+

v∑
k=3

qk

(
p∗kEk

2
+ (1− p∗k)Ek

)

+
n∑

k=v+1

qkEk

= q1

(
E1 −

C

2

)
+ q2

(
E2

2
− C

6

)
+

v∑
k=3

qk

(
Ek −

C

2

)
+

n∑
k=v+1

qkEk, (91)

where the last equality follows from the definition of p∗ in (79). Notice that we require proving

h2(q) ≤ h2(x2) for all q ∈ ∆n. Due to the nondecreasing property, this reduces to proving

E1 −
C

2
≥ Ev+1, and E1 −

C

2
≥ E2

2
− C

6
(92)

For the first inequality notice that,

Ev+1 = Ev+1 −
C

2
+

C

2
≤(a)

E1(v − 1)

v
− C

2
+

E1

2v
= E1 −

C

2
− E1

2v
≤ E1 −

C

2
, (93)

where (a) follows from Claim 1 and Claim 2. For the second inequality, notice that

E2

2
+

C

3
≤(a)

E1

2
+

E1

3v
≤ E1 (94)

where (a) follows from the nondecreasing property and Claim 1. Rearranging above we have

the requirred inequality. Hence, we are done.

Now consider the scenario where the three players use the strategy profile (p∗,x2, q), where

p∗,x2 are defined in the statement of the lemma and q ∈ ∆n. Then the expected reward h3(q)

of player 2 is

h3(q)

= q1

(
p∗1E1

3
+

(1− p∗1)E1

2

)
+

v∑
k=2

qk

(
p∗kEk

2
+ (1− p∗k)Ek

)
+

n∑
k=v+1

qkEk

= q1

(
E1

2
− C

6

)
+

v∑
k=2

qk

(
Ek −

C

2

)
+

n∑
k=v+1

qkEk, (95)
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where the last equality follows from the definition of p∗ in (79). Notice that we require proving

h3(q) ≤ h3(x3) for all q ∈ ∆n. Due to the nondecreasing property, this reduces to proving

E2 −
C

2
≥ Ev+1, and E2 −

C

2
≥ E1

2
− C

6
(96)

For the first inequality, notice that,

E2 − Ev+1 ≥(a) E2 −
2v − 3

2v − 2
E2 =

E2

2(v − 1)
≥ C

2
(97)

where (a) follows from Claim 4 and the last inequality follows from Claim 5.

For the second inequality, notice that,

E2 −
E1

2
≥(a) E2 −

2v − 3

2v − 2
E2 =

E2

2(v − 1)
≥(b)

C

2
≥ C

3
(98)

where (a) follows from Claim 3 and (b) follows from Claim 5. Rearranging, we are done. Hence,

we are done with the proof.

Now, we prove Theorem 2 step by step. Recall that we assumed without loss of generality that

E is sorted as Ek ≥ Ek+1 for all k ∈ {1, 2, . . . , n− 1}. Notice that from Lemma 5 we have,

fworst(p) =


∑n

k=1 pkEk − 2
3
Γ1(p) if Γ1(p) > 3Γ2(p)∑n

k=1 pkEk − 1
2
Γ1(p)− 1

2
Γ2(p) if Γ1(p) ≤ 3Γ2(p)

(99)

where Γ1(p), Γ2(p) are the largest and the second largest elements of the set {pkEk; 1 ≤ k ≤ n},

respectively. Observe that if Γ1(p) = 3Γ2(p), then 2
3
Γ1(p) = 1

2
Γ1(p) +

1
2
Γ1(p). In particular,

the function fworst(p) is continuous and so it has a maximizer p∗ over the compact set ∆n. By

considering the case Γ1(p
∗) ≥ 3Γ2(p

∗) and a particular index i ∈ {1, . . . , n} achieves p∗iEi =

Γ1(p
∗), and the case Γ1(p

∗) ≤ 3Γ2(p
∗) and particular indices i ̸= j achieve p∗iEi = Γ1(p

∗),

p∗jEj = Γ2(p
∗), we notice that p∗ is the solution of the problem with the maximal optimal

objective out of the n2 linear programs,

(P1-i) : max
n∑

k=1

pkEk −
2piEi

3

s.t. p ∈∆n,

piEi ≥ 3pkEk ∀1 ≤ k ≤ n,

(100)
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and

(P1-(i, j)) : max
n∑

k=1

pkEk −
piEi

2
− pjEj

2

s.t. p ∈ ∆n, piEi ≤ 3pjEj, piEi ≥ pjEj,

pjEj ≥ pkEk ∀1 ≤ k ≤ n, k ̸= i,

(101)

where i, j ∈ [1 : n] and i ̸= j. To solve (P1-i), and (P1-(i, j)), it shall be useful to re-index to

associate i with 1, and (i, j) with 1 and 2. Hence, we define the two problems.

(P1-1) : max f1(p) =
n∑

k=1

pkFk −
2p1F1

3

s.t. p ∈ ∆n,

p1F1 ≥ 3pk+1Fk+1 ∀k ∈ {1, . . . , n− 1},

(102)

and

(P1-2) : max f2(p) =
n∑

k=1

pkFk −
p1F1

2
− p2F2

2

s.t. p ∈ ∆n, p1F1 ≤ 3p2F2, p1F1 ≥ p2F2,

p2F2 ≥ pkFk ∀3 ≤ k ≤ n,

(103)

where for (P1-1), without loss of generality F ∈ Rn is assumed to a positive vector such that

Fk ≥ Fk+1 for k ∈ [2 : n − 1], and for (P1-2), F ∈ Rn is assumed to a positive vector such

that Fk ≥ Fk+1 for k ∈ [3 : n− 1]. It should be noted that the Fk values are just the Ek values

under more convenient indexing. Solving the above two problems immediately solves each of the

previously defined n2 problems. Define the two sequences (Ui; 1 ≤ i ≤ n), and (Vi; 2 ≤ i ≤ n)

by,

Ui =
i

3
F1

+
∑i

k=2
1
Fk

, (104)

and,

Vi =
i− 1∑i
k=1

1
Fk

. (105)

These two sequences are useful when constructing the solutions to (P1-1) and (P1-2).
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1) Solving (P1-1): Consider the problem (P1-1):

(P1-1) : max f1(p)

s.t. p ∈ ∆n,

p1F1 ≥ 3pk+1Fk+1 ∀k ∈ {1, 2, . . . , n− 1},

(106)

where the function f1 is defined by

f1(p) =
n∑

k=1

pkFk −
2p1F1

3
. (107)

Let us define

u = arg max
1≤i≤n

Ui, (108)

where the sequence (Ui; 1 ≤ i ≤ n) is defined in (104) and argmax returns the least index in

the case of ties. We establish that the solution to (P1-1) is p̃∗, where

p̃∗k =



3
F1

3
F1

+
∑u

j=2
1
Fj

if k = 1

1
Fk

3
F1

+
∑u

j=2
1
Fj

if 2 ≤ k ≤ u

0 otherwise,

(109)

with optimal objective value Uu.

Consider the vector µ̃∗ ∈ Rn−1 defined by

µ̃∗
k =


1
3

(
1− 1

Fk+1

u
3
F1

+
∑u

j=2
1
Fj

)
if 1 ≤ k ≤ u− 1

0 otherwise,
(110)

where u is defined in (108). In the subsequent analysis, we establish that µ̃∗ defined above is

a valid Lagrange multiplier (µ̃∗
k ≥ 0 for all k ∈ [1 : n − 1]) and (p̃∗, µ̃∗) satisfy the conditions

of Lemma 3, where for k ∈ [1 : n− 1], µ̃∗
k corresponds to the constraint p1F1 ≥ 3pk+1Fk+1 of

(P1-1). This establishes that p̃∗ solves (P1-1). It can be easily checked by substitution that the

objective value of (P1-1) for p̃∗ is Uu. Hence, the steps of the proof can be summarized as:

1) µ̃∗
k ≥ 0 for all k ∈ [1 : n− 1].

2) p̃∗ is feasible for (P1-1). In particular, we have that p̃∗ ∈ ∆n and p̃∗1F1 ≥ 3p̃∗k+1Fk+1 for

k ∈ {1, . . . , n− 1}.
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3) p̃∗ solves the unconstrained problem with Lagrange multiplier vector µ̃∗ (See Lemma 3

for the construction of the unconstrained problem).

4) For k ∈ {1, . . . , n− 1}, µ̃∗
k > 0 implies the corresponding constraint of (P1-1) is met with

equality.

Notice that step 2 above can be checked by direct substitution from (109). Also, for step 4, notice

that from the definition of µ̃∗ in (110), µ̃∗
k > 0 implies that k ∈ {1, . . . , u− 1}. By substitution

from the definition of p̃∗ in (109), it follows that p̃∗1F1 = 3p̃∗k+1Fk+1 for k ∈ {1, . . . , u − 1}.

Hence, we are only required to establish steps 1 and 3. We establish step 1 along with two

other results that will be useful for step 3 in Lemma 7 below, after which we establish step 3

in Lemma 8.

Lemma 7: Consider the µ̃∗ defined in (110). We have that

(a) µ̃∗
k ≥ 0 for all k such that 1 ≤ k ≤ n− 1.

(b) Fk(1− 3µ̃∗
k−1) =

u
3
F1

+
∑u

i=2
1
Fi

for 2 ≤ k ≤ u and F1

(
1
3
+
∑u−1

i=1 µ̃∗
i

)
= u

3
F1

+
∑u

i=2
1
Fi

.

(c) Fk ≤ u
3
F1

+
∑u

j=2
1
Fj

for u+ 1 ≤ k ≤ n.

Proof: Notice that since u = argmax1≤i≤n Ui, we have that

Uu ≥ Uj for all j ∈ [1 : n]. (111)

(a) Notice that when k > u − 1, by definition of µ̃∗ in (110), we have that µ̃∗
k = 0. Now

suppose k ≤ u− 1. Hence, we can assume u ≥ 2. From the definition of µ̃∗ in (110), we

are required to prove,

Fk+1 ≥
u

3
F1

+
∑u

j=2
1
Fj

, (112)

for all k ∈ {1, 2, . . . , u−1}. It is enough to prove the above for k = u−1, since Fk ≥ Fk+1

for k ≥ 2. Notice that from (111) we have that Uu ≥ Uu−1 (recall that u ≥ 2). Substituting

from (104), Uu ≥ Uu−1 translates to,

u
3
F1

+
∑u

j=2
1
Fj

≥ u− 1
3
F1

+
∑u−1

j=2
1
Fj

. (113)

Simplifying the above gives

Fu ≥ u
3
F1

+
∑u

j=2
1
Fj

(114)

as desired.

June 2023 DRAFT



34

(b) Substituting from the definition of µ̃∗
k in (110) and simplifying yields the result.

(c) If u = n, there is nothing to prove. Hence, we can assume u < n. Notice that it is enough

to prove the result for k = u + 1, since Fk ≥ Fk+1 for k ≥ 2. From (111), we have that

Uu ≥ Uu+1 (recall that u < n). Substituting from (104), Uu ≥ Uu+1 translates to,

u
3
F1

+
∑u

j=2
1
Fj

≥ u+ 1
3
F1

+
∑u+1

j=2
1
Fj

(115)

Simplifying the above we have,

Fu+1 ≤
u

3
F1

+
∑u

j=2
1
Fj

(116)

as desired.

Lemma 8: The vector p̃∗ defined in (109) solves unconstrained problem with Lagrange multi-

plier vector µ̃∗ defined in (110) (See Lemma 3 for the construction of the unconstrained problem).

In particular, p̃∗ solves

max f1(p) +
n−1∑
k=1

µ̃∗
k(p1F1 − 3pk+1Fk+1)

s.t. p ∈ ∆n,

(117)

where the function f1 is defined in (107).

Proof: Noticing from the definition of µ̃∗ in (110) that µ̃∗
k = 0 for k > u, and using the

definition of function f1 in (107), the objective of the above unconstrained problem simplifies

as

f1(p) +
n−1∑
k=1

µ̃∗
k(p1F1 − 3pk+1Fk+1)

= p1F1

(
1

3
+

u−1∑
i=1

µ̃∗
i

)
+

u∑
k=2

pkFk(1− 3µ̃∗
k−1) +

n∑
k=u+1

pkFk

=
u∑

i=1

piC +
n∑

k=u+1

pkFk, (118)

where

C =
u

3
F1

+
∑u

i=2
1
Fi

(119)
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and the last inequality follows from Lemma 7-(b). Also, notice that from Lemma 7-(c), we

have that C ≥ Fk for all k ∈ {u + 1, . . . , n}. Hence, the optimal solution to the above defined

unconstrained problem is any p ∈ ∆n such that pk = 0 for all k ∈ {u+1, . . . , n}. In particular,

p̃∗ given in (109) is a solution to the unconstrained problem.

2) Solving (P1-2): Consider the problem (P1-2).

(P1-2) : max f2(p)

s.t. p ∈ ∆n, p1F1 ≤ 3p2F2, p1F1 ≥ p2F2,

p2F2 ≥ pkFk ∀3 ≤ k ≤ n,

(120)

where the function f2 is defined as

f2(p) =
n∑

k=1

pkFk −
p1F1

2
− p2F2

2
(121)

Let us define

u = arg max
2≤i≤n

Ui (122)

and

v = arg max
2≤i≤n

Vi (123)

where the sequences (Ui; 1 ≤ i ≤ n), and (Vi; 2 ≤ i ≤ n) are defined in (104), and (105),

respectively, and argmax returns the least index in the case of ties. In this case, to define u,

we only consider the indices of the (Ui; 1 ≤ i ≤ n) sequence starting from 2 in contrast to

the definition of u in the solution to (P1-1). The solution of (P1-2) can be described under two

cases.

Case 1: Vv > Uu: The solution to (P1-2) in this case is p̂∗ where

p̂∗k =


1
Fk∑v

j=1
1
Fj

if 1 ≤ k ≤ v

0 otherwise,
(124)

with optimal objective value Vv.

Case 2: Vv ≤ Uu: The solution to (P1-2) in this case is p̄∗ where

p̄∗k =



3
F1

3
F1

+
∑u

j=2
1
Fj

if k = 1

1
Fk

3
F1

+
∑u

j=2
1
Fj

if 2 ≤ k ≤ u

0 otherwise.

(125)
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with optimal objective value Uu.

Similar to the the solution of (P1-1), for each case, we construct a Lagrange multiplier vector

such that the conditions of the Lemma 3 are satisfied. For the Lagrange multiplier vector µ ∈ Rn

we associate µ1 with the constraint p1F1 ≤ 3p2F2, µ2 with the constraint p1F1 ≥ p2F2, and µk

for k ∈ {3, . . . , n} with the constraint p2F2 ≥ pkFk. Now, we analyze the two cases separately.

Case 1: Vv > Uu: Recall that we are required to prove p̂∗ where

p̂∗k =


1
Fk∑v

j=1
1
Fj

if 1 ≤ k ≤ v

0 otherwise,
(126)

is the solution to (P1-2). Define the vector µ̂∗ ∈ Rn as

µ̂∗
k =



1
F1

v−1∑v
j=1

1
Fj

− 1
2

if k = 2,

1− 1
Fk

v−1∑v
j=1

1
Fj

if 3 ≤ k ≤ v,

0 otherwise,

(127)

where v is defined in (123). Similar to the solution of (P1-1), we focus on establishing the four

steps:

1) µ̂∗
k ≥ 0 for all k ∈ [1 : n].

2) p̂∗ is feasible for (P1-2). In particular, we have that p̂∗ ∈ ∆n and 3p̂∗2F2 ≥ p̂∗1F1 ≥ p̂∗2F2,

and p̂∗2F2 ≥ p̂∗kFk for k ∈ {3, . . . , n}.

3) p̂∗ solves the unconstrained problem with Lagrange multiplier vector µ̂∗.

4) For k ∈ {1, . . . , n}, µ̂∗
k > 0 implies the corresponding constraint of (P1-2) is met with

equality.

Similar to the solution of (P1-1), step 2 can be checked by direct substitution from (126). Also,

for step 4, notice that from the definition of µ̂∗ in (127), µ̂∗
k > 0 implies that k ∈ {2, . . . , v}.

By substitution from the definition of p̂∗ in (126), it follows that p̃∗1F1 = p̃∗2F2 and p̃∗2F2 = p̃∗kFk

for k ∈ {3, . . . , v}. We establish step 1 along with two other results that will be useful for step

3 in Lemma 9. Then we establish step 3 in Lemma 10.

Lemma 9: Consider the µ̂∗ defined in (127). We have that

(a) µ̂∗
k ≥ 0 for all k such that 1 ≤ k ≤ n.

(b) F1

(
1
2
+ µ̂∗

2

)
= v−1∑v

j=1
1
Fj

, F2

(
1
2
− µ̂∗

2 +
∑v

i=3 µ̂
∗
i

)
= v−1∑v

j=1
1
Fj

and Fk(1−µ̂∗
k) =

v−1∑v
j=1

1
Fj

for 3 ≤

k ≤ v.
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(c) Fk ≤ v−1∑v
j=1

1
Fj

for v + 1 ≤ k ≤ n

Proof: Notice that since u = argmax2≤i≤n Ui, and v = argmax2≤i≤n Vi, we have that

Uu ≥ Uj for all j ∈ [2 : n], and Vv ≥ Vj for all j ∈ [2 : n]. Since from the case description, we

have that Vv > Uu, we should have that,

Vv ≥ Vj for all j ∈ [2 : n] and Vv > Uj for all j ∈ [2 : n] (128)

(a) Notice that the result trivially follows for k ̸∈ {2, . . . , v} since µ̂∗
k = 0 for such k. Hence,

we focus on k ∈ {2, . . . , v}. We first prove that µ̂∗
2 ≥ 0. Notice that from (128), we have

that Vv > Uv. After substituting from (104) and (105), Vv > Uv translates to

v − 1∑v
j=1

1
Fj

≥ v
1
F1

+
∑v

j=2
1
Fj

. (129)

Simplifying the above, we get,

v − 1∑v
j=1

1
Fj

≥ F1

2
(130)

as desired.

To obtain the result for 3 ≤ k ≤ v, we can assume that v ≥ 3. Notice that we are required

to prove,

Fk ≥
v − 1∑v
j=1

1
Fj

. (131)

It is enough to prove the above for k = v, since Fk ≥ Fk+1 for k ≥ 3. From (128) we

have that Vv ≥ Vv−1 (recall that v ≥ 3). Substituting from (105), Vv ≥ Vv−1 translates to

v − 1∑v
j=1

1
Fj

≥ v − 2∑v−1
j=1

1
Fj

. (132)

Simplifying the above, we get,

v − 1∑v
j=1

1
Fj

≤ Fv (133)

as desired.

(b) Substituting from the definition of µ̂∗
k from (127) and simplifying yields the result.

(c) If v = n, there is nothing to prove. Hence, we can assume v < n. Notice that it is enough

to prove the result for k = v + 1, since Fk ≥ Fk+1 for k ≥ 3. From (128) we have that

Vv ≥ Vv+1 (recall that v < n). Substituting from (105), Vv ≥ Vv+1 translates to

v − 1∑v
j=1

1
Fj

≥ v∑v+1
j=1

1
Fj

. (134)
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Simplifying the above, we get,

Fv+1 ≤
v − 1∑v
j=1

1
Fj

(135)

as desired.

Lemma 10: The vector p̂∗ defined in (126) solves unconstrained problem with Lagrange

multiplier vector µ̂∗ defined in (127). In particular, p̂∗ solves

max f2(p) + µ̂∗
1(3p2F2 − p1F1) + µ̂∗

2(p1F1 − p2F2) +
n∑

k=3

µ̂∗
k(p2F2 − pkFk)

s.t. p ∈ ∆n,

(136)

where the function f2 is defined in (121).

Proof: Noticing from the definition of µ̂∗ in (127) that µ̂∗
k = 0 for k > v, and using the

definition of function f2 in (121), the objective of the unconstrained problem simplifies as

f2(p) + µ̂∗
1(3p2F2 − p1F1) + µ̂∗

2(p1F1 − p2F2) +
n∑

k=3

µ̂∗
k(p2F2 − pkFk)

= p1F1

(
1

2
+ µ̂∗

2

)
+ p2F2

(
1

2
− µ̂∗

2 +
v∑

i=3

µ̂∗
i

)
+

v∑
k=3

pkFk(1− µ̂∗
k) +

n∑
k=v+1

pkFk

=
v∑

i=1

piC +
n∑

k=v+1

pkFk, (137)

where

C =
v − 1∑v
i=1

1
Fi

, (138)

and the last inequality follows from Lemma 9-(b). From Lemma 9-(c), we have that C ≥ Fk for

all k ∈ {v+ 1, . . . , n}. Hence, the optimal solution to the above defined unconstrained problem

is any p ∈ ∆n such that pk = 0 for all k ∈ {v + 1, . . . , n}. In particular, p̂∗ given in (126) is a

solution to the unconstrained problem.

Case 2 Uu ≥ Vv: Recall that, we are required to prove p̄∗ given by

p̄∗k =



3
F1

3
F1

+
∑u

j=2
1
Fj

if k = 1

1
Fk

3
F1

+
∑u

j=2
1
Fj

if 2 ≤ k ≤ u

0 otherwise.

(139)
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is the solution to (P1-2). Consider the vector µ̄∗ ∈ Rn given by

µ̄∗
k =



1
2
− 1

F1

u
3
F1

+
∑u

j=2
1
Fj

if k = 1,

1− 1
Fk

u
3
F1

+
∑u

j=2
1
Fj

if 3 ≤ k ≤ u,

0 otherwise.

(140)

where u is defined in (122). Similar to case 1, we focus on establishing the four steps:

1) µ̄∗
k ≥ 0 for all k ∈ [1 : n].

2) p̄∗ is feasible for (P1-2). In particular, we have that p̄∗ ∈ ∆n and 3p̄∗2F2 ≥ p̄∗1F1 ≥ p̄∗2F2,

and p̄∗2F2 ≥ p̄∗kFk for k ∈ {3, . . . , n}.

3) p̄∗ solves the unconstrained problem with Lagrange multiplier vector µ̄∗.

4) For k ∈ {1, . . . , n}, µ̄∗
k > 0 implies the corresponding constraint of (P1-2) is met with

equality.

Similar to case 1, step 2 can be checked by direct substitution from (139). For step 4, notice

that from the definition of µ̄∗ in (140), µ̄∗
k > 0 implies that either k = 1 or k ∈ {3, . . . , u}. By

substitution from the definition of p̄∗ in (139), it follows that p̄∗1F1 = 3p̄∗2F2 and p̄∗2F2 = p̄∗kFk

for k ∈ {3, . . . , u}. Similar to case 1, we establish step 1 along with two other results that will

be useful for step 3 in Lemma 11, after which we establish step 3 in Lemma 12.

Lemma 11: For the µ̄∗ defined in (140), we have that

(a) µ̄∗
k ≥ 0 for all k such that 1 ≤ k ≤ n.

(b) We have F1

(
1
2
− µ̄∗

1

)
= u

3
F1

+
∑v

j=2
1
Fj

, F2

(
1
2
+ 3µ̄∗

1 +
∑u

i=3 µ̄
∗
i

)
= u

3
F1

+
∑v

j=2
1
Fj

, and Fk(1 −

µ̄∗
k) =

u
3
F1

+
∑v

j=2
1
Fj

for 3 ≤ k ≤ u.

(c) Fk ≤ u
3
F1

+
∑u

j=2
1
Fj

for u+ 1 ≤ k ≤ n

Proof: Notice that since u = argmax2≤i≤n Ui, and v = argmax2≤i≤n Vi, we have that

Uu ≥ Uj for all j ∈ [2 : n], and Vv ≥ Vj for all j ∈ [2 : n]. Since from the case description, we

have that Uu ≥ Vv, we should have that,

Uu ≥ Uj for all j ∈ [2 : n] and Uu ≥ Vj for all j ∈ [2 : n] (141)

(a) Notice that this condition is trivially satisfied for k ∈ {2} ∪ {u + 1, . . . , n} since µ̄∗
k = 0

for such k. Hence, we focus on k ̸∈ {2} ∪ {u + 1, . . . , n}. First, we prove that µ̄∗
1 ≥ 0.

Notice that from (141), we have that Uu ≥ Vu. Substituting from (104) and (105), Uu ≥ Vu
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translates to

u
3
F1

+
∑u

k=2
1
Fk

≥ u− 1∑u
k=1

1
Fk

. (142)

Simplifying the above, we have that

u
3
F1

+
∑u

j=2
1
Fj

≤ F1

2
(143)

as desired.

To obtain the result for 3 ≤ k ≤ u, notice that we can assume u ≥ 3. Notice that we are

required to prove

Fk ≥
u

3
F1

+
∑u

j=2
1
Fj

. (144)

Since Fk ≥ Fk+1 for k ≥ 3, it is enough to prove the above for k = u. Notice that from

(141), we have that Uu ≥ Uu−1 (recall that u ≥ 3). Substituting from (104), Uu ≥ Uu−1

translates to

u
3
F1

+
∑u

k=2
1
Fk

≥ u− 1
3
F1

+
∑u−1

k=2
1
Fk

. (145)

Simplifying the above, we have that

Fu ≥ u
3
F1

+
∑u

k=2
1
Fk

(146)

as desired.

(b) Substituting from the definition of µ̄∗
k simplifying yields the result.

(c) If u = n, there is nothing to prove. Hence, we can assume u < n. Notice that it is enough

to prove the result for k = u + 1, since Fk ≥ Fk+1 for k ≥ 3. From (141) we have that

Uu ≥ Uu+1 (recall that u < n). Substituting from (104), Uu ≥ Uu+1 translates to

u
3
F1

+
∑u

k=2
1
Fk

≥ u+ 1
3
F1

+
∑u+1

k=2
1
Fk

. (147)

Simplifying the above, we have that

Fu+1 ≤
u

3
F1

+
∑u

k=2
1
Fk

(148)

as desired.
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Lemma 12: The vector p̄∗ defined in (139) solves unconstrained problem with Lagrange

multiplier vector µ̄∗ defined in (140). In particular, p̄∗ solves

max f2(p) + µ̄∗
1(3p2F2 − p1F1) + µ̄∗

2(p1F1 − p2F2) +
n∑

k=3

µ̄∗
k(p2F2 − pkFk)

s.t. p ∈ ∆n,

(149)

where the function f2 is defined in (121).

Proof: Noticing from the definition of µ̄∗ in (140) that µ̄∗
k = 0 for k > u, and using the

definition of function f2 in (121), the objective of the above unconstrained problem simplifies

as

f2(p) + µ̄∗
1(3p2F2 − p1F1) + µ̄∗

2(p1F1 − p2F2) +
n∑

k=3

µ̄∗
k(p2F2 − pkFk)

= p1F1

(
1

2
− µ̄∗

1

)
+ p2F2

(
1

2
+ 3µ̄∗

1 +
u∑

i=3

µ̄∗
i

)
+

u∑
k=3

pkFk(1− µ̄∗
k) +

n∑
k=u+1

pkFk,

=
u∑

i=1

piC +
n∑

k=u+1

pkFk, (150)

where

C =
u

3
F1

+
∑u

i=2
1
Fi

, (151)

and the last inequality follows from Lemma 11-(b). From Lemma 11-(c), we have that C ≥ Fk

for all k ∈ {u + 1, . . . , n}. Hence, the optimal solution to the above defined unconstrained

problem is any p ∈ ∆n such that pk = 0 for all k ∈ {u + 1, . . . , n}. In particular, p̄∗ given in

(125) is a solution to the unconstrained problem.

3) Finding p∗: Finally, we are ready to combine the solutions of (P1-1) and (P1-2) to find

p∗ ∈ argmaxp∈∆n f
worst(p). Notice that since we solved (P1-1) and (P1-2), we have solved all

of the n2 problems (P1-i), and (P1-(i, j)) for i, j ∈ [1 : n] such that i ̸= j defined in (100)

and (101), respectively. Hence, we can find p∗ by solving all the above problems and finding

the one that gives the highest optimal objective. But, it turns out that it is, in fact, enough to

solve (P1-1), and (P1-(1, 2)). To prove this, consider arbitrary (i, j) such that 1 ≤ i, j ≤ n such

that i ̸= j. Define, D ∈ Rn to be the vector obtained by permuting the entries of E such that

D1 = Ei, D2 = Ej , and Dk ≥ Dk+1 for k ∈ [3 : n−1]. Notice that due to the solution of (P1-2),
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the optimal value of (P1-(i, j)) is given by

γ∗ = max

{
a− 1∑a
k=1

1
Dk

,
b

3
D1

+
∑b

k=2
1
Dk

∣∣∣∣∣2 ≤ a, b ≤ n

}
, (152)

Notice that,

max

{
a− 1∑a
k=1

1
Ek

,
b

3
E1

+
∑b

k=2
1
Ek

∣∣∣∣∣a, b ∈ [2 : n]

}
≥ γ∗, (153)

where the inequality follows since
∑a

k=1
1
Ek

≤
∑a

k=1
1
Dk

, and 3
E1

+
∑b

k=2
1
Ek

≤ 3
D1

+
∑b

k=2
1
Dk

for all a, b ∈ [2 : n]. This follows since, Ek ≥ Ek+1 for all k ∈ [1 : n − 1]. But notice that the

left-hand side of (153) is the optimal value of (P1-(1, 2)). Hence, the optimal value of (P1-(1, 2))

is at least as that of (P1-(i, j)). Hence, it is enough to solve (P1-(1, 2)). With similar reasoning,

we can establish that solving (P1-1) suffices. Considering the solutions (P1-(1, 2)) and (P1-1),

we have the result.

C. m = 2, arbitrary r

The general two-player case can be reduced to a linear program. Again fworst can be found

explicitly in this case. It can be easily seen that

fworst(p) =
n∑

k=1

pkEk −
1

2

(
r∑

j=1

max(j){pkEk; 1 ≤ k ≤ n}

)
, (154)

where max(j) returns the j-th largest element in a set. Consider the following
(
n
r

)
linear programs,

each indexed by a size r ordered subset of [1 : n] containing distinct elements, where the problem

(P-a1, a2, .., ar) with ak ∈ [1 : n] for each k ∈ [1 : r] and ak < ak+1 for k ∈ [1 : r − 1], is given

by,

(P-a1, a2, .., ar): max
p, γ

n∑
j=1

pjEj −
1

2

(
r∑

j=1

pajEaj

)

s.t. p ∈ ∆n,r,

pajEaj ≥ γ ∀1 ≤ j ≤ r,

γ ≥ ptEt ∀t ∈ [1 : n] \ {a1, a2, .., ar}

(155)

Notice that the solution of (P2) is the solution of the problem out of the above
(
n
r

)
problems

with the maximum objective value. Hence, solving (P2) amounts to solving
(
n
r

)
linear programs.

In the below lemma, we prove that it is, in fact, enough to solve (P-1, 2, .., r)
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Lemma 13: The optimal objective value of (P-1, 2, .., r) is at least the optimal objective value

of (P-a1, a2, .., ar), where ak ∈ [1 : n] for each k ∈ [1 : r] and ak < ak+1 for each k ∈ [1 : r−1].

Proof: See Appendix C

For 1 ≤ a, b ≤ n, define,

Sa,b =


∑b

i=a
1
Ei

if b ≥ a

0 otherwise
, (156)

Now, we focus on constructing the solution for the problem subjected to two assumptions.

A1 E1, E2, . . . , En are distinct real numbers

A2 for all a ∈ [1 : r], and b ∈ [r + 1, n], EbSa,b is not an integer.

The solution for this case is defined in terms of three functions h : [0 : r− 1]× [r+1 : n] → R,

e : [0 : r − 1] × [r + 1 : n] → R, and g : [r + 1 : n] × [r + 1 : n] → R. Before introducing the

three functions, we begin with a few definitions.

Good triplets and bad triplets: We call a triplet (a, b, c) ∈ [0 : r− 1]× [r+1 : n]× [r+1 : n]

a good-triplet if r − a + b − c < EbSa+1,b. If the reverse inequality is true, we call (a, b, c) a

bad-triplet index.

The following lemma introduces certain properties regarding triplets.

Lemma 14: Consider the following scenarios.

1) If (a, b, c) is a good-triplet then,

a) If b > r + 1, then (a, b− 1, c) is a good-triplet

b) If c < n, then (a, b, c+ 1) is a good-triplet

c) If a < r − 1, then (a+ 1, b, c) is a good-triplet

d) If a > 0, and c < n, then (a− 1, b, c+ 1) is a good-triplet

2) If (a, b, c) is a bad-triplet then,

a) If b < n, then (a, b+ 1, c) is a bad-triplet

b) If c > r + 1, then (a, b, c− 1) is a bad-triplet

c) If a > 0, then (a− 1, b, c) is a bad-triplet

d) If a < r − 1, and c > 0, then (a+ 1, b, c− 1) is a bad-triplet

Proof: See Appendix D

Function h: From Lemma 14-1-a, 2-a, we have that, for fixed (a, c) ∈ [0 : r − 1] × [r + 1, n],

either (a, b, c) are good-triplets for all b ∈ [r+1, n], (a, b, c) are bad-triplets for all b ∈ [r+1, n],
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or there exists a unique b ∈ [r+1, n− 1] such that (a, b, c) is a good-triplet and (a, b+1, c) is a

bad-triplet. Define h(a, c) = n in the first case, h(a, c) = r in the second case, and h(a, c) = b

where b is the unique index in the third case.

Function e: Similarly, from Lemma 14-1-b, 2-b, we have that, for fixed (a, b) ∈ [0 : r − 1] ×

[r + 1, n], either (a, b, c) are good-triplets for all c ∈ [r + 1, n], (a, b, c) are bad-triplets for all

c ∈ [r + 1, n], or there exists a unique c ∈ [r + 2, n] such that (a, b, c) is a good-triplet and

(a, b, c− 1) is a bad-triplet. Define e(a, b) = r+1 in the first case, e(a, b) = n+1 in the second

case, and e(a, b) = c where c is the unique index in the third case.

Function g: Similarly, from Lemma 14-1-c, 2-c, we have that, for fixed (b, c) ∈ [r + 1, n] ×

[r + 1, n], either (a, b, c) are good-triplets for all a ∈ [0, r − 1], (a, b, c) are bad-triplets for all

a ∈ [0, r − 1], or there exists a unique a ∈ [1, r − 1] such that (a, b, c) is a good-triplet and

(a− 1, b, c) is a bad-triplet. Define g(b, c) = 0 in the first case, g(b, c) = r in the second case,

and g(b, c) = a where a is the unique index in the third case.

Now, we construct the explicit solution using the functions defined above.

Theorem 3: Assume that we are given the two assumptions A1, and A2 are true. Define the

three sets X1,X2,X3, as

X1 = {(a, c) ∈ [0 : r − 1]× [r + 1 : n]|r < h(a, c)}

X2 = {(a, b) ∈ [0 : r − 1]× [r + 1 : n]|b < e(a, b) ≤ n}

X3 = {(b, c) ∈ [r + 1 : n]× [r + 1 : n]|b ≤ c, 0 < g(b, c) ≤ r − 1}, (157)

and define the vectors p1,a,c for (a, c) ∈ X1, p2,a,b for (b, c) ∈ X2 and p3,b,c for (b, c) ∈ X3,

where,

1) for (a, c) ∈ X1

p1,a,ck =



1 if 1 ≤ k ≤ a

r−a+b−c
EkSa+1,b

if a+ 1 ≤ k ≤ b

1 if b+ 1 ≤ k ≤ c

0 otherwise,

(158)

where b = min{h(a, c), c},
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2) for (a, b) ∈ X2,

p2,a,bk =



1 if 1 ≤ k ≤ a

Eb

Ek
if a+ 1 ≤ k ≤ b

1 if b+ 1 ≤ k ≤ c− 1

(r − a) + b− c− EbSa+1,b−1 if k = c

0 otherwise,

(159)

where c = e(a, b)

3) for (b, c) ∈ X3,

p3,b,ck =



1 if 1 ≤ k ≤ a− 1

r − a+ b− c− EbSa+1,b−1 if k = a

Eb

Ek
if a+ 1 ≤ k ≤ b

1 if b+ 1 ≤ k ≤ c

0 otherwise,

(160)

where a = g(b, c).

1) We have that,

a) p1,a,c for all (a, c) ∈ X1 are all valid vectors belonging to ∆n,r.

b) p2,a,b for all (a, b) ∈ X2 are all valid vectors belonging to ∆n,r.

c) p3,b,c for all (b, c) ∈ X3 are all valid vectors belonging to ∆n,r.

where p1,a,c,p2,a,b and p3,b,c are defined in (158), (159), and (160), respectively.

2) We have that,

a) for (a, c) ∈ X1, (p1,a,c, γ) is feasible for (P-1,2,..,r), where γ = δ
Sa+1,b

, and b =

min{h(a, c), c}.

b) for (a, b) ∈ X2, (p2,a,b, γ) is feasible for (P-1,2,..,r), where γ = Eb

c) for (b, c) ∈ X3, (p3,b,c, γ) is feasible for (P-1,2,..,r), where γ = Eb

d) the pair (p0, γ), where

p0k =

 1 if 1 ≤ k ≤ r

0 otherwise
(161)
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Fig. 2. Left: The mean rewards of different resources. Right: Probabilities of choosing different resources for the considered

E.

and γ = Er+1 is feasible for (P-1,2,..,r).

3) The solution to (P-1, 2, .., r) is the one that produces the maximum objective value out of

the elements in the following set

A ={p0} ∪ {p1,a,c : (a, c) ∈ X1} ∪ {p2,a,b : (a, b) ∈ X2} ∪ {p3,b,c : (b, c) ∈ X3}, (162)

along with the γ values defined in part-2.

Proof: See Appendix E

Fig. 2 denotes the optimal probabilities found for n, r = 10, 3, along with E given by,

Ej =


7 if j = 1

6.7 if j = 2

1 + 60−3j
19

otherwise

(163)

In Fig. 2, it can be seen that player A1 will always choose a subset of resources with the highest

mean rewards, and the probabilities of choosing the remaining resources follow a similar pattern

to the m = 3, r = 1 case described in Section III-B. The intuition behind this is also very similar

to the three-player singleton case.

IV. SIMULATION RESULTS

In this section we present our simulation results. In Figure 3, we simulate the performance

of our algorithm for n = 6,m = 5,E = [3, 1, 1, 1, 0.5, 0.1] for r ∈ {1, 2, 3}. For each value
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of r, we run Algorithm 2 for 2 × 106 iterations. We first plot 1
t

∑t
τ=1 f

worst(p(τ)) vs t, after

which we plot the entries of p(t) vs t, where t is the iteration number. In the plots, we also plot

the optimal objective value fworst,∗, and the optimal p∗ for reference. In Figure 4, we repeat the

above with parameters n = 6,m = 5,E = [6.1, 1, 1, 1, 0.5, 0.1] for r ∈ {1, 2, 3}.

Notice that in both cases, we use E sorted in decreasing order. Comparing the case r = 1 for

the two values of E it can be seen that when E = [6.1, 1, 1, 1, 0.5, 0.1], player 1 chooses resource

1 with probability 1 while when E = [3, 1, 1, 1, 0.5, 0.1], player 1 chooses several resources with

nonzero probability. This is because when E = [6.1, 1, 1, 1, 0.5, 0.1], the mean reward of the first

resource is higher than five times the mean reward of the second resource. Hence, even if all

the other players choose resource 1, player 1 will not benefit by choosing a different resource.

From Figure 3-Bottom-Left and Figure 4-Bottom-Left, it can be seen that the online algorithm

learns this behavior. However, when r > 1, player 1 chooses resource 1 with probability 1 for

both values of E. In all cases, it can be seen that the worst-case expected utility of the online

algorithm converges to the optimal value.

Another interesting observation is the slower convergence of the algorithm for r = 1 with

E = [6.1, 1, 1, 1, 0.5, 0.1]. This may be due to the fact that this is the only case where the optimal

solution p∗ is an extreme point of ∆n,r and it chooses all resources except resource 1 with zero

probability. In particular, using p(t) close to p∗ in the initial phases of the algorithm reduces

exploration required to learn the Ek values.

V. CONCLUSIONS

In this paper, we considered the problem of worst-case expected utility maximization for

the first player of multi-player resource-sharing games with fair reward allocation under two

settings. In the first setting, we provided an algorithmic solution to a one-slot game, where we

also provided explicit solutions for two special cases. For the second setting, we considered an

online scenario, for which we provided an upper confidence bound algorithm that achieves a

worst-case regret of O(
√

T log (T )). The simulations and the explicit solutions depict interesting

variations of the probability of choosing a resource when the mean of the considered resource

is changed while holding the mean reward of other resources fixed.
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Fig. 3. Scenario E = [3, 1, 1, 1, 0.5, 0.1]. Top: 1
t

∑t
τ=1 f

worst(p(τ)) and fworst,∗ vs t, Bottom: Components of p(t) and

components of p∗ vs t for , Left: r = 1, Middle: r = 2, Right: r = 3

Fig. 4. Scenario E = [6.1, 1, 1, 1, 0.5, 0.1]. Top: 1
t

∑t
τ=1 f

worst(p(τ)) and fworst,∗ vs t, Bottom: Components of p(t) and

components of p∗ vs t, Left: r = 1, Middle: r = 2, Right: r = 3

June 2023 DRAFT



49

Algorithm 2: Algorithm for Appendix A

1 Initialize x = [0, 0, . . . , 0] ∈ Nn.

2 for each iteration k ∈ [1 : (m− 1)r] do

3 Increase xi by 1 where i ∈ argmin k∈[1:n]
xk<m−1

{
pkFk

1+xk
− pkFk

2+xk

}
.

4 end

5 Output x.

APPENDIX A

FINDING x∗ ∈ argminx∈J f(p,x)

Given F ∈ Rn
+, and p ∈ ∆n,r, we focus on finding x∗ ∈ argminx∈J

∑n
k=1

pkFk

1+xk
. This is an

optimization over a nonconvex discrete set x ∈ J . However, it has a classical separable structure

that is well studied in the literature and can be solved exactly using either a greedy O(n +

mr log(n)) incremental algorithm or an improved O(n log(mr)) algorithm. For completeness,

we summarize an O(nmr) algorithm in Algorithm 2. For improved algorithms, refer to the work

of [55].

APPENDIX B

MADOW’S SAMPLING TECHNIQUE

In this section, we present the Madow’s sampling technique (Algorithm 3). The algorithm

takes as an input a vector p ∈ ∆n,r and outputs a set A ⊂ [1 : n] such that |A| = r, and

E{1k∈A} = pk for all k ∈ [1 : n]. See [1] for the proof of the correctness of the algorithm.

APPENDIX C

PROOF OF LEMMA 13

Let A = (a1, a2, .., ar) be a subset of [1 : n] containing distinct elements such that ak < ak+1

for each k ∈ [1 : r − 1]. Consider the problem (P-A). Let us B = [1 : n] \ A. Denote Abad =

A \ [1 : r] as the set of bad-1 indices and the set, Bbad = B ∩ [1 : r] as the set of bad-2 indices.

Notice that for any given problem, there are an equal number of bad-1 and bad-2 indices. We

intend to prove that there is an optimal solution with no bad-1 (or bad-2) indices. For this,
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Algorithm 3: Madow’s sampling technique

1 Define Π0 = 0, and Πk = Πk−1 + pk ∀k ∈ [1 : n].

2 Sample U ∼ Uniform(0, 1).

3 Define the set S0 = ∅, where ∅ denotes the empty set.

4 for each k ∈ {0, 1, . . . , r − 1} do

5 Find the unique i ∈ [1 : n] such that Πi−1 ≤ U + k < Πi.

6 Define Sk+1 = Sk ∪ {i}.

7 end

8 Output A = Sr.

we establish that for any problem with k > 0 bad-1 elements, there exists another problem

with k − 1 bad-1 indices with an objective value at least as the objective value of the problem

with k bad-1 indices. Assume (P-A) has k bad-1 indices. Let (p, γ) be the optimal solution of

(P-a1, a2, .., ar). We consider two cases.

Case 1: There is no pair (a
′
, b

′
) such that a

′ is a bad-1 index and b
′ is a bad-2 such that

Ea′ < Eb′ .

Notice that any bad-1 index is greater than any bad-2 index. Hence, for pair (i, j) such that

i is a bad-1 index, and j is a bad-2 index, we have that Ej ≥ Ei (Since E is assumed to be

decreasing). Hence, the above condition would mean that Ej = Ei for all i, j such that i is

bad-1, and j is bad-2. Hence (p, γ) will be feasible for (P-(A \ {i} ∪ {j})) as well. Moreover,

(p, γ) will give the same objective value for (P-(A\{i}∪{j})) as (P-A), and (P-(A\{i}∪{j}))

will have k − 1 bad-1 indices.

Case 2: There exists a pair (a
′
, b

′
) such that a

′ is a bad-1 index and b
′ is a bad-2 such that

Ea′ < Eb′ .

We begin with the following two lemmas.

Lemma 15: There exists t ∈ A, and s ∈ B such that Etpt = Esps = γ.

Proof: We only prove the existence of t ∈ A such that Etpt = γ. The other part can be solved

by repeating the same argument. Assume the contrary. Let γ∗ = (min{pjEj; j ∈ A} + γ)/2.

We have that γ∗ > γ, and pjEj > γ∗ for all j ∈ A. Notice that pa′ > 0 and pb′ < 1 (The first

inequality follows since pa′Ea′ > pb′Eb′ , and the second inequality follows since pa′Ea′ > pb′Eb′ ,
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and Eb′ > Ea′ ). Hence, there exists δ > 0, small enough such that,

Ea′ (pa′ − δ) ≥ γ∗ (164)

Eb′ (pb′ + δ) ≤ γ∗ (165)

(pa′ − δ) ≥ 0 (166)

(pb′ + δ) ≤ 1. (167)

Hence (p̃, γ∗), where p̃ is given by,

p̃k =


pk if k ∈ [1 : n] \ {a′

, b
′}

pa′ − δ if k = a
′

pb′ + δ if k = b
′

(168)

is feasible for (P-a1, a2, .., ar), and also achieves a higher optimal objective value since Eb′ > Ea′ .

This is a contradiction.

Lemma 16: For (P-a1, a2, .., ar), there exists an optimal solution with at least one bad-1

element a such that, Eapa = γ, and at least one bad bad-2 element b such that Ebpb = γ.

Proof: Notice that for all k ∈ A \ Abad, and j ∈ Abad, we have that Ek ≥ Ej .

Notice that the entries of p can be rearranged without affecting the objective and feasibility for

(P-a1, a2, .., ar) such that the following two conditions are satisfied.

C1 For k ∈ A \ Abad, and j ∈ Abad, if we have Ek = Ej , then pk ≥ pj .

C2 For k ∈ B \ Bbad, and j ∈ Bbad if we have Ek = Ej , then pj ≥ pk.

Now we establish that any optimal p reordered such that both C1 and C2 are met satisfy the

conditions of the lemma. We show only the bad-1 case. The bad-2 case can be solved using the

same argument.

Assume the contrary. Hence, all bad-1 elements j satisfy Ejpj > γ. Consider t ∈ A such

that Etpt = γ (Such a t always exists from Lemma 15). Notice that t cannot be bad-1. Hence

Et ≥ Ej for all bad-1 indices j. In this case, we have the following claim.

Claim: There exists a bad-1 index i such that Ei < Et.

Proof: If no such bad-1 index i exists, then we should have Et = Ej for all bad-1 indices

j. From C1, this would imply that pt ≥ pj for all bad-1 indices j. Hence, we should have

Etpt ≥ Ejpj > γ, which contradicts Etpt = γ.
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Consider the i described in the Claim. Since Etpt = γ < Eipi, and Et > Ei, we have that,

pt < pi ≤ 1. Also we have that pi > 0 since Eipi > γ. Hence, it is possible to find δ > 0, small

enough such that,

Ei(pi − δ) ≥ γ (169)

(pi − δ) ≥ 0 (170)

(pt + δ) ≤ 1. (171)

Since Et > Ei it is easy to see that, (p̃, γ) given by,

p̃k =


pk if k ∈ [1 : n] \ {i, t}

pi − δ if k = i

pt + δ if k = t

(172)

is a better solution to (P-a1, a2, .., ar). This is a contradiction.

Now, let a, b be the indices such that a is bad-1 and Eapa = γ, and b is bad-2 and Ebpb = γ,

which are guaranteed to exists due to Lemma 16. Consider the problem, (P-(A\{a})∪{b}), which

has k − 1 bad-1 elements. Notice that since Eapa = Ebpb = γ, we have that (p, γ) is feasible

for (P-(A \ {a}) ∪ {b}). Also, the objective values of (P-(A \ {a}) ∪ {b}) and (P-a1, a2, .., ar)

evaluated at (p, γ) are equal. Hence, we are done.

APPENDIX D

PROOF OF LEMMA 14

Let δ = r − a+ b− c.

1) Recall that (a, b, c) being a good-triplet is equivalent to,

δ < EbSa+1,b (173)

a) Notice that,

r − a+ b− 1− c = δ − 1 <(a) EbSa+1,b − 1 = EbSa+1,b−1 ≤ Eb−1Sa+1,b−1, (174)

where (a) follows from (173), and the last inequality follows since Eb−1 ≥ Eb.

b) Notice that,

r − a+ b− (c+ 1) = δ − 1 <(a) EbSa+1,b − 1 < EbSa+1,b (175)
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where (a) follows from (173)

c) Notice that,

r − (a+ 1) + b− c = δ − 1 <(a) EbSa+1,b − 1 = EbSa+1,b−1 < EbSa+2,b. (176)

where (a) follows from (173) and the last inequality follows since Sa+2,b ≥ Sa+1,b−1,

which follows since E is non-increasing in it’s components.

d) Notice that,

r − (a− 1) + b− (c+ 1) = δ <(a) EbSa+1,b < EbSa,b, (177)

where (a) follows from (173).

2) All the claims in this part follow from the contra-positives of the corresponding claims in

part 1.

APPENDIX E

PROOF OF THEOREM 3

1)

a) Recall that, X1 = {(a, c) ∈ [0 : r − 1]× [r + 1 : n]|r < h(a, c)}, and p1,a,c for (a, c) ∈ X1 is

defined as,

p1,a,ck =



1 if 1 ≤ k ≤ a

r−a+b−c
EkSa+1,b

if a+ 1 ≤ k ≤ b

1 if b+ 1 ≤ k ≤ c

0 otherwise,

(178)

where b = min{h(a, c), c}. We first prove that p1,a,c, is a valid vector in ∆n,r.

Since (a, c) ∈ X1, we have that h(a, c) > r and c > r, which implies that,

0 ≤ a < r < b ≤ c ≤ n. (179)

Notice that since h(a, c) > r, from the definition of h, we have that (a, h(a, c), c) is a good-triplet.

Since b ≤ h(a, c), combining with Lemma 14-1-a, we have that,

(a, b, c) is a good-triplet. (180)
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This means that,

r − a+ b− c < EbSa+1,b. (181)

Also, notice that if b < c, then we should have b = h(a, c) and b < n, which implies from the

definition of h that (a, b+ 1, c) is a bad-triplet. Hence,

if b < c, (a, b+ 1, c) is a bad-triplet. (182)

Hence, if b < c we have that,

Eb+1Sa+1,b < r − a+ b− c, (183)

where the inequality is strict due to assumption A2. Since (a, c) ∈ X1, we have that a +

1 ≤ r < b ≤ c, which implies that (178) is a valid definition. Now we check the conditions

for p1,a,c ∈ ∆n,r. The sum constraint can be checked by direct substitution. The constraint,

0 ≤ p1,a,ck ≤ 1 follows trivially for k ̸∈ [a + 1, b]. For k ∈ [a + 1, b], the constraint 0 ≤ p1,a,ck

holds if and only if r − a + b − c > 0. Notice that this holds whenever b < c due to (183). If

b = c, the above reduces to r− a > 0, which holds since a < r by the definition of X1. Hence,

we have,

δ ≥ 0 (184)

Now, to establish that p1,a,ck ≤ 1, we have

p1,a,ck =
δ

EkSa+1,b

≤ δ

EbSa+1,b

≤ 1, (185)

where the last inequality follows due to (181).

b) Recall that, X2 = {(a, b) ∈ [0 : r− 1]× [r+1 : n]|b < e(a, b) ≤ n}, and p2,a,b for (a, b) ∈ X2

is defined as,

p2,a,bk =



1 if 1 ≤ k ≤ a

Eb

Ek
if a+ 1 ≤ k ≤ b

1 if b+ 1 ≤ k ≤ c− 1

(r − a) + b− c− EbSa+1,b−1 if k = c

0 otherwise,

(186)
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where c = e(a, b). Now, we prove that p1,a,b, is a valid vector in ∆n,r. Since (a, b) ∈ X2, we

have that,

n ≥ e(a, b) = c > b > r > a ≥ 0 (187)

Notice that since the definition of function e, and the fact that e(a, b) > b ≥ r+1, we have that,

(a, b, c) is a good-triplet, (188)

and

(a, b, c− 1) is a bad-triplet. (189)

This means that,

EbSa+1,b − 1 < r − a+ b− c < EbSa+1,b, (190)

where the first inequality is strict due to assumption A2. Notice that, a + 1 ≤ r < b < c ≤ n.

Hence, p2,a,b defined in (186) is a valid definition. Now we check the conditions for p2,a,b ∈ ∆n,r

The sum constraint can be checked using direct substitution. Since for k ∈ [a+ 1, b] we have,

p2,a,bk =
Eb

Ek

≤ Eb

Eb

= 1, (191)

the constraint, 0 ≤ p2,a,bk ≤ 1 follows trivially for k ̸= c.

For k = c, notice that,

p2,a,bc = δ − EbSa+1,b−1 = δ + 1− EbSa+1,b ∈ [0, 1], (192)

where last inequality follows from (190).

c) Recall that, X3 = {(b, c) ∈ [r + 1 : n]× [r + 1 : n]|b ≤ c, 0 < g(b, c) ≤ r − 1}, and p3,b,c for

(b, c) ∈ X3 is defined as,

p3,b,ck =



1 if 1 ≤ k ≤ a− 1

r − a+ b− c− EbSa+1,b−1 if k = a

Eb

Ek
if a+ 1 ≤ k ≤ b

1 if b+ 1 ≤ k ≤ c

0 otherwise,

(193)

June 2023 DRAFT



56

where a = g(b, c). Since (b, c) ∈ X3, we have that,

0 < a < r < b ≤ c ≤ n. (194)

Notice that since the definition of g, and the fact that g(b, c) > 0, we have that,

(a, b, c) is a good-triplet, (195)

and

(a− 1, b, c) is a bad-triplet. (196)

This means that,

EbSa,b − 1 < r − a+ b− c < EbSa+1,b, (197)

where the first inequality is strict due to assumption A2.

Notice that the definition of p3,b,c in (193) is a valid since 0 < a < r < b ≤ c ≤ n. Now

we check the conditions for p3,b,c ∈ ∆n,r. The sum constraint can be checked using direct

substitution. Due to the same argument as case 2, in this case, the constraint, 0 ≤ p3,b,ck ≤ 1

follows trivially for k ̸= a. For k = a, notice that,

p3,b,ca = δ − EbSa+1,b−1 = δ + 1− EbSa+1,b ≤ 1, (198)

where the last inequality follows from (197).

2)

a) For k ∈ [1 : a] we have that, p1,a,ck Ek = Ek ≥ pa+1Ea+1 = γ. For k ∈ [a+ 1 : b] we have

that, p1,a,ck Ek = γ. Finally, for k ∈ [b+1 : c], we can assume that b < c, in which case we

have that p1,a,ck Ek = Ek ≤ Eb+1 ≤ γ, where the last inequality follows from (181).

b) For k ∈ [1 : a] we have that, p2,a,bk Ek = Ek ≥ Eb = γ. For k ∈ [a + 1 : b − 1] we have

that, p2,a,bk Ek = Eb = γ. For k ∈ [b + 1 : n], we have that p2,a,bk Ek ≤ Ek ≤ Eb = γ. For

k = b, we have that, p2,a,bb Eb ≤ Eb = γ.

c) For k ∈ [1 : a − 1] we have that, p3,b,ck Ek = Ek ≥ Eb = γ. For k ∈ [a + 1 : b] we have

that, p3,b,ck Ek = Eb = γ. For k ∈ [b + 1 : n], we have that p3,b,ck Ek ≤ Ek ≤ Eb = γ. For

k = a, we have that,

p3,b,cb Ea − Eb = Ea(r − a+ b− c− EbSa+1,b−1)− Eb
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= Ea(r − a+ b− c− EbSa,b−1) ≥ 0, (199)

where the last inequality follows due to (197).

d) This follows trivially, by substitution, due to the non-increasing property of E.

3) Define the three sets,

A1 = {p1,a,c : (a, c) ∈ X1}, A2 = {p2,a,b : (a, b) ∈ X2}, A3 = {p3,b,c : (b, c) ∈ X3},

A = {p0} ∪ A1 ∪ A2 ∪ A3 (200)

Let us denote by z(q) the objective value of (P-1, 2, .., r) for q ∈ ∆n,r. We solve the problem

under four cases. The four cases can be summarized as,

C1 Best vector in A comes from A1

C2 Best vector in A comes from A2

C3 Best vector in A comes from A3

C4 Best vector in A is p0, where p0 is defined in (161).

In each of the above cases, we focus on constructing a Lagrange multiplier vector µ ∈ Rn that

will establish the best vector is optimal from Lagrange Multiplier Lemma (Lemma 3).

Case 1: Best vector in A comes from A1

Let p1,a,c denote the best vector where (a, c) ∈ X1 (See the definition in (178)). Define,

b = min{h(a, c), c}.

θ =
r − a

2
+ b− r (201)

and δ = r − a+ b− c. Hence, we have,

z(p1,a,c) =
a∑

i=1

Ei

2
+

θδ

Sa+1,b

+
c∑

i=b+1

Ei. (202)

We introduce the following lemma, which will be useful in handling this case.

Lemma 17: We have that,

1) θ
Sa+1,b

≤ Ec

2) Ea+1

2
≤ θ

Sa+1,b

3) If a > 0, we have, Ea

2
≥ θ

Sa+1,b

4) If c < n, we have, Ec+1 ≤ θ
Sa+1,b

,

where θ is defined in (201).
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Proof:

1) We prove this part in several cases. The cases make sense since c ≥ b ≥ r + 1 from (179),

Case 1 c = r+1: Combining b ≤ c and (179), we should have b = r+1. We are required to prove

that Er+1Sa+1,r+1 ≥ r−a
2

+ 1. Notice that in this case, (181) simplifies to r− a < Er+1Sa+1,r+1.

Hence, we are done if r − a ≥ 2. Hence, the only case to check is a = r − 1. In this case, the

required statement simplifies to Er ≤ 2Er+1, which follows from z(p0) ≤ z(p1,a,c), where p0

is defined in (161).

Case 2 c > r+1, b = c, and (a, c−1, c−1) is a good-triplet: From (179) and c−1 ≥ r+1, we

have that (a, c− 1) belongs to the domain of function h. Since (a, c− 1, c− 1) is a good-triplet,

from the definition of function h, we have that h(a, c − 1) ≥ c − 1. Since, c − 1 ≥ r + 1, we

have that (a, c− 1) ∈ X1, and min{h(a, c− 1), c− 1} = c− 1. Hence,

z(p1,a,c−1) =
a∑

i=1

Ei

2
+

(θ − 1)δ

Sa+1,c−1

(203)

Simplifying z(p1,a,c−1) ≤ z(p1,a,c) we have the result.

Case 3 c > r+1, b = c, and (a, c− 1, c− 1) is a bad-triplet: From (179) and c− 1 ≥ r+1, we

have that (a, c− 1) belongs to the domain of function e. Combining (180) with Lemma 14-1-a,

we have that, (a, c − 1, c) is a good-triplet. Combining this with the case description, we have

that e(a, c− 1) = c. Since c− 1 < c ≤ n, where the last inequality follows from (179), we have

that (a, c− 1) ∈ X2. Notice that,

z(p2,a,c−1) =
a∑

i=1

Ei

2
+ Ec−1 (θ − 1) + Ec(δ − Ec−1Sa+1,c−1) (204)

Substituting for z(p2,a,c−1) ≤ z(p1,a,c), we get,

(EcSa+1,c − θ)(Ec−1Sa+1,c − δ) > 0. (205)

Since Ec−1Sa+1,c ≥ EcSa+1,c > δ, where the last inequality follows from (181), we are done.

Case 4 c > r + 1, b < c, and (a, b, c− 1) is a good-triplet: From (179) and c− 1 ≥ r + 1, we

have that (a, c− 1) belongs to the domain of function h. Since b < c ≤ n, from (182), we have

that (a, b+ 1, c) is a bad-triplet. Combining with c > r + 1, from Lemma 14-2-b, we have that

(a, b+1, c− 1) is a bad-triplet. Since (a, b, c− 1) is a good-triplet, we have that h(a, c− 1) = b.

Since c− 1 ≥ r + 1, we have that (a, c− 1) ∈ X1. Also, min{h(a, c− 1), c− 1} = c− 1, since
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b ≤ c− 1. Hence,

z(p1,a,c−1) =
a∑

i=1

Ei

2
+

θ(δ + 1)

Sa+1,b

+
c−1∑

i=b+1

(206)

Substituting to z(p1,a,c−1) ≤ z(p1,a,c) and simplifying, we get the desired result.

Case 5 c > r+1, and b < c, (a, b, c−1) is a bad-triplet: From (179), we have that (a, b) belongs

to the domain of e. Combining (a, b, c− 1) is a bad-triplet with (180), we have that e(a, b) = c.

Since b < c ≤ n, where the last inequality follows from (179), we have that (a, b) ∈ X2. Hence,

z(p2,a,b) =
a∑

i=1

Ei

2
+ Ebθ +

c−1∑
i=b+1

Ei + Ec(δ − EbSa+1,b−1). (207)

Substituting for z(p2,a,b) ≤ z(p1,a,c) and simplifying yields,

(EcSa+1,b − θ)(EbSa+1,b − δ) > 0 (208)

Combining with (181), we have the desired result.

2) We consider four cases. The cases make sense since a ≤ r − 1, b ≤ c from (179).

Case 1 a = r − 1: Notice that from (184), in this case we should have c − b ∈ {0, 1}. Also,

since z(p0) ≤ z(p1,a,c), we have,

Er

2
≤ θδ

Sr,b

+
c∑

i=b+1

Ei =
θ(1 + b− c)

Sr,b

+
c∑

i=b+1

Ei ≤
θ

Sr,b

+ (c− b)

(
Eb+1 −

θ

Sr,b

)
(209)

Now, notice that if c− b = 0, we have the desired result. If c− b = 1, we have,

Er

2
≤ Eb+1. (210)

Hence,

Er

2
Sr,b =

1

2
+

Er

2

b∑
i=r+1

1

Ei

≤(a)
1

2
+

Er

2

(
b− r

Eb+1

)
≤(b)

1

2
+ b− r = θ. (211)

where (a) follows since, Ei ≥ Eb+1 for i ∈ [r + 1 : b], and (b) follows from (210).

Case 2 a < r − 1 and b = c:

Case 3 a < r−1, c > b, (a+1, b+1, c) is a bad-triplet: We handle the above two cases together.

In both the above cases, due to a < r−1, and (179), we have that (a+1, c) belongs to the domain

of h. We prove that in both of the above cases, (a+1, c) ∈ X1 and min{h(a+1, c), c} = b. First,

notice that from (180), a < r−1, and Lemma 14-1-c, we have that (a+1, b, c) is a good-triplet.
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• If b = c, since (a + 1, b, c) is a good-triplet, we have h(a + 1, c) ≥ b = c > r, where last

inequality follows from (179). Hence, (a+ 1, c) ∈ X1, and min{h(a+ 1, c), c} = c = b.

• If c > b and (a + 1, b + 1, c) is a bad-triplet, we have that h(a + 1, c) = b > r, where the

last inequality follows from (179). Hence (a+ 1, c) ∈ X1, and min{h(a+ 1, c), c} = b.

Hence,

z(p1,a+1,c) =
a+1∑
i=1

Ei

2
+

(
θ − 1

2

)
(δ − 1)

Sa+2,b

+
c∑

i=b+1

Ei. (212)

Substituting and simplifying z(p1,a+1,c) ≤ z(p1,a,c) we get,(
Ea+1

2
Sa+1,b − θ

)
(Ea+1Sa+1,b − δ) < 0 (213)

Notice that Ea+1Sa+1,b ≥ EbSa+1,b > δ, where last inequality follows from (181).

Case 4: a < r− 1, b < c, and (a+1, b+1, c) is a good-triplet: Since c > b, we have that from

(182) that (a, b+1, c) is a bad-triplet. Due to b+1 ≤ c, and (179), we have that (b+1, c) belongs

to the domain of g. Combining the above with the case description, we have g(b+1, c) = a+1.

Since b+ 1 ≤ c and a+ 1 < r, we have that (b+ 1, c) ∈ X3. Hence,

z(p3,b+1,c) =
a∑

i=1

Ei

2
+

Ea+1

2
(δ − Eb+1Sa+2,b) + Eb+1

(
θ +

1

2

)
+

c∑
i=b+2

Ei. (214)

Substituting and simplifying z(p3,b+1,c) ≤ z(p1,a,c) we get,(
Ea+1

2
Sa+1,b − θ

)
(Eb+1Sa+1,b − δ) > 0 (215)

Combining with (183), we are done.

3) We consider two cases. The cases make sense since a−1 ≥ 0 from the statement description.

Case 1 (a− 1, b, c) is a good-triplet: Notice that since a > 0 from the statement and (179), we

have that (a − 1, c) belongs to the domain of h. Since, (a − 1, b, c) is a good-triplet, we have

that h(a− 1, c) ≥ b > r, where the last inequality follows from (179). Hence, (a− 1, c) ∈ X1.

If b = c, we have that min{h(a − 1, c), c} = c = b. If c > b, we have from (182) that

(a, b + 1, c) is a bad-triplet, which when combined with a > 0 and Lemma 14-2-c, gives

(a−1, b+1, c) is a bad-triplet. Combining with the case description, we have that h(a−1, c) =

b. Hence, min{h(a − 1, c), c} = b. Hence in either case we have that, (a − 1, c) ∈ X1 and

min{h(a− 1, c), c} = b. Hence,

z(p1,a−1,c) =
a−1∑
i=1

Ei

2
+

(
θ + 1

2

)
(δ + 1)

Sa,b

+
c∑

i=b+1

Ei. (216)
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Substituting and simplifying z(p1,a−1,c) ≤ z(p1,a,c) we get,(
Ea

2
Sa+1,b − θ

)
(EaSa+1,b − δ) ≥ 0 (217)

Combining (181), and Ea ≥ Eb, we have EaSa+1,b ≥ EbSa+1,b > δ which gives the result.

Case 2 (a − 1, b, c) is a bad-triplet: Notice that from (179), we have that (b, c) belongs to the

domain of g. Combining the case description with (180), we have g(b, c) = a. Combining (179),

and 0 < a, we have that (b, c) ∈ X3. Hence,

z(p3,b,c) =
a−1∑
i=1

Ei

2
+

Ea

2
(δ − EbSa+1,b−1) + Ebθ +

c∑
i=b+1

Ei (218)

Using z(p3,b,c) ≤ z(p1,a,c), yields the inequality,(
Ea

2
Sa+1,b − θ

)
(EbSa+1,b − δ) > 0 (219)

Using (181), we have the desired result.

4) We consider the following two cases. The cases make sense since b+ 1 ≤ c+ 1 ≤ n, where

the first inequality follows from (179), and the second follows from the statement description.

Case 1 (a, b + 1, c + 1) is a bad-triplet: Combining c < n from the statement description with

(179), we have that (a, c+1) belongs to the domain of h. Notice that from (180), and Lemma 14-

1-b, we have that (a, b, c+ 1) is a good-triplet. Hence, we have h(a, c+ 1) = b > r, where the

last inequality follows from (179). Hence, (a, c + 1) ∈ X1, and min{h(a, c + 1), c + 1} = b.

Hence,

z(p1,a,c+1) =
a∑

i=1

Ei

2
+

θ(δ − 1)

Sa+1,b

+
c+1∑

i=b+1

Ei. (220)

Substituting and simplifying z(p1,a,c+1) ≤ z(p1,a,c) we get the desired result.

Case 2 b = c, (a, b+1, c+1) is a good-triplet: Combining c < n from the statement description

with (179), we have that (a, c + 1) belongs to the domain of h. Since, (a, b + 1, c + 1) is a

good-triplet, we should have h(a, c+ 1) ≥ b+ 1 = c+ 1 > r, where the last inequality follows

from (179). Hence, (a, c+ 1) ∈ X1, and min{h(a, c+ 1), c+ 1} = c+ 1. Hence,

z(p1,a,c+1) =
a∑

i=1

Ei

2
+

(θ + 1)δ

Sa+1,c+1

. (221)

Substituting and simplifying z(p1,a,c+1) ≤ z(p1,a,c) we get the desired result.
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Case 3 b < c, (a, b+1, c+1) is a good-triplet: Since b < c, from (182), we have that (a, b+1, c)

is a bad-triplet. From (179), we have b + 1 ≤ c ≤ n and a ≥ 0, which implies that (a, b + 1)

belongs to the domain of e. Combining with (a, b+ 1, c+ 1) is a good-triplet, we should have

e(a, b + 1) = c + 1. Since n ≥ c + 1 > b + 1 where the first inequality follows from (179), we

have that (a, b+ 1) ∈ X2. Hence,

z(p2,a,b+1) =
a∑

i=1

Ei

2
+ Ec+1 (δ − Eb+1Sa+1,b) + θEb+1 +

c∑
i=b+1

Ei (222)

Using z(p2,a,b+1) ≤ z(p1,a,c), yields the inequality,

(Ec+1Sa+1,b − θ) (Eb+1Sa+1,b − δ) > 0 (223)

Combining with (183), we have the desired result.

Now, we construct a Lagrange multiplier that satisfies the conditions of Lemma 3. Consider

µ ∈ Rn, given by,

µk =


C
Ek

− 1
2

if a+ 1 ≤ k ≤ r

1− C
Ek

if r + 1 ≤ k ≤ b

0 otherwise

, (224)

where,

C =
θ

Sa+1,b

. (225)

The above µ satisfies µ ≥ 0. If k ∈ [a+ 1, r], we have that,

µk =
C

Ek

− 1

2
≥ C

Ea

− 1

2
≥ 0, (226)

where the last inequality follows due to Lemma 17-2. If k ∈ [r + 1, b], we have that,

µk = 1− C

Ek

≥ 1− C

Ec

≥ 0, (227)

where the last inequality follows due to Lemma 17-1.

Using the above µ as a Lagrange multiplier for problem (P-1,2,..,r), we have the problem,

max
p, γ

a∑
j=1

pj
Ej

2
+

b∑
j=a+1

Cpj +
n∑

j=b+1

Ej

s.t. p ∈ ∆n,r, λ ∈ R

(228)
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Notice that due to Lemma 17, we have that, Ej/2 ≥ C for j ∈ [1 : a], Ej ≥ C, for j ∈ [b+1 : c],

and Ej ≤ C for j ∈ [c+1, n]. Hence, an optimal solution p for the above problem is p = p1,a,c

with arbitrary γ. Let, γ = δ
Sa+1,b

. Notice that from Lemma 3, part-2-a, we have that (p1,a,c, γ)

is feasible for (P-1,2,..,r). Also, notice that from the definition of µ, we have µk > 0 implies

p1,a,ck Ek = γ. Hence, from Lemma 3, we have that (p1,a,c, γ) solves (P-1,2,..,r), as desired.

Case 2: Best vector in A comes from A2

Let p2,a,b denote the best vector where (a, b) ∈ X2 and let c = e(a, b). Define

θ =
r − a

2
+ b− r (229)

and δ = r − a+ b− c. We have the following claim.

Claim: We should have a < r − 1.

Proof: Assume the contrary. Hence, from (187) we have a = r−1. Hence, we have p2,a,bk = 1

for all 1 ≤ k ≤ r − 1. Additionally from (179), notice that b ≥ r + 1. Also from the definition

of p2,a,b, we have p2,a,bb = 1, and p2,a,br = Er+1/Er > 0, which implies that,
∑n

k=1 p
2,a,b
k > r.

This is a contradiction.

Combining the claim, and (187), we should have in this case, that

(a+ 1, b, c− 1) ∈ [0 : r − 1]× [r + 1 : n]× [r + 1 : n] (230)

Now we prove the following lemma.

Lemma 18: We have that,

1) Ec

Ea+1
≥ 1

2

2) If a > 0, then Ec

Ea
≤ 1

2

3) EcSa+1,b−1 + 1 ≥ θ

4) Eb (θ − EcSa+1,b−1) ≥ Ec,

where θ is defined in (229).

Proof:

1) We complete the proof using two cases. Notice that the following two cases make sense due

to (230).

Case 1 (a+ 1, b, c− 1) is a bad-triplet: From (230), we have (a+ 1, b) belongs to the domain

of e. Combining (188) and a + 1 ≤ r − 1 with Lemma 14-1-c, we have that (a + 1, b, c) is a
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good-triplet. Hence, e(a+1, b) = c. Since, b < c ≤ n from (187), we have that, (a+1, b) ∈ X2.

Hence,

z(p2,a+1,b) =
a+1∑
i=1

Ei

2
+ Eb

(
θ − 1

2

)
+

c∑
i=b+1

Ei + Ec (δ − 1− EbSa+2,b) . (231)

Using z(p2,a,b) ≥ z(p2,a+1,b), yields the inequality,

(2Ec − Ea+1)(Ea+1 − Eb) ≥ 0, (232)

which yields the result since Ea+1 > Eb (the inequality is strict due to assumption A1).

Case 2 (a+1, b, c−1) is a good-triplet: Notice that due to (230), we have that (b, c−1) belongs

to the domain of g. Combining (189) with the case description, we have that g(b, c−1) = a+1.

Combining the claim, (187), and a+ 1 > 0, we have that (b, c− 1) ∈ X3. Hence,

z(p3,b,c−1) =
a∑

i=1

Ei

2
+ Eb

(
θ − 1

2

)
+

c−1∑
i=b+1

Ei +
Ea+1

2
(δ − EbSa+2,b−1) . (233)

Using z(p2,a,b) ≥ z(p3,b,c+1), yields the inequality,(
Ec −

Ea+1

2

)
(δ + 1− EbSa+1,b) > 0, (234)

which establishes the result combined with (190).

2) We consider two cases. The two cases make sense since a > 0 by the statement description.

Case 1 (a−1, b, c) is a good-triplet: Combining a > 0 from the statement description and (187),

we have that, (a−1, b) belongs to the domain of e. Combining a > 0, (189), and Lemma 14-2-c,

(a − 1, b, c − 1) is a bad-triplet. Combining the above with the case description, we have that

e(a− 1, b) = c. Since b < c ≤ n from (187), we have that (a− 1, b) ∈ X2. Hence,

z(p2,a−1,b) =
a−1∑
i=1

Ei

2
+ Eb

(
θ +

1

2

)
+

c∑
i=b+1

Ei + Ec (δ + 1− EbSa+1,b) . (235)

Using z(p2,a,b) ≥ z(p2,a−1,b), yields the inequality,

(Ea − 2Ec)(Ea − Eb) ≥ 0. (236)

which establishes the result since Ea > Eb (the inequality is strict by assumption A1).

Case 2 (a − 1, b, c) is a bad-triplet: From (230), we have that (b, c) belongs to the domain of

g. Combining the case description with (188), we have that g(b, c) = a.Combining (187) and

a > 0, we have that (b, c) ∈ X3. Hence,

z(p3,b,c) =
a−1∑
i=1

Ei

2
+ Ebθ +

c∑
i=b+1

Ei +
Ea

2
(δ − EbSa+1,b−1) . (237)
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Using z(p2,a,b) ≥ z(p3,b,c), yields the inequality,(
Ec −

Ea

2

)
(δ − EbSa+1,b) > 0, (238)

which establishes the result from (190).

3) We consider three cases. The cases make sense since, b ≥ r+1 from (187), and if b > r+1,

(a, b− 1, c− 1) ∈ [0 : r − 1]× [r + 1 : n]× [r + 1 : n] from (187).

Case 1 b = r + 1: This case reduces to,
∑r

i=a+1
Ec

Ei
≥ r−a

2
, which is true due to 1.

Case 2 b > r + 1, (a, b− 1, c− 1) is a bad-triplet: Combining b− 1 ≥ r + 1 and (187), we

have that (a, b− 1) belongs to the domain of e. From b− 1 ≥ r+ 1, (188), and Lemma 14-1-a,

we have that (a, b − 1, c) is a good-triplet. Hence, we have e(a, b − 1) = c. Combining with

(187), we have (a, b− 1) ∈ X2. Hence,

z(p2,a,b−1) =
a∑

i=1

Ei

2
+ Eb−1 (θ − 1) +

c∑
i=b

Ei + Ec (δ − 1− Eb−1Sa+1,b−1) . (239)

Using z(p2,a,b) ≥ z(p2,a,b−1), yields the inequality,

(Eb − Eb−1)(θ − 1− EcSa+1,b−1) > 0, (240)

yields the result since Eb−1 > Eb (the inequality is strict due to assumption A1).

Case 3 b > r+1, (a, b−1, c−1) is a good-triplet: Combining c−1 ≥ b−1geqr+1, with (187),

we have that (a, c− 1) belongs to the domain of h. Combining (189), and the case description,

we have that h(a, c − 1) = b − 1. Notice that b − 1 ≥ r + 1. Hence, (a, c − 1) ∈ X1, and

min{h(a, c− 1), c− 1} = b− 1. Hence,

z(p1,a,c−1) =
a∑

i=1

Ei

2
+

(θ − 1) δ

Sa+1,b−1

+
c−1∑
i=b

Ei (241)

Using z(p2,a,b) ≥ z(p1,a,c−1), yields the inequality,

(θ − 1− EcSa+1,b−1) (δ − EbSa+1,b−1) ≤ 0, (242)

which establishes the result due to (190).

4) Notice that the above reduces to,

θ ≥ EcSa+1,b. (243)

We consider three cases. The cases make sense since (187) tells us b + 1 ≤ c and hence

(a, b+ 1, c) ∈ [0 : r − 1]× [r + 1 : n]× [r + 1 : n], and b ≤ c from (187).
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Case 1 (a, b+ 1, c) is a bad-triplet: Due to (187), we have that (a, b) belongs to the domain of

h. Combining the case description with (188), we have that h(a, c) = b. Since, b ≥ r + 1 from

(187), we have that (a, c) ∈ X1, and min{h(a, c), c} = b. Hence,

z(p1,a,c) =
a∑

i=1

Ei

2
+

θδ

Sa+1,b

+
c∑

i=b+1

Ei (244)

Using z(p2,a,b) ≥ z(p1,a,c), yields the inequality,

(EcSa+1,b − θ) (EbSa+1,b − δ) < 0, (245)

which establishes the result due to (190).

Case 2 b + 1 = c, and (a, b + 1, c) is a good-triplet: Due to (187), we have that (a, b) belongs

to the domain pf h. Since, (a, b + 1, c) is a good-triplet, we have h(a, c) ≥ b + 1 = c. Since,

b+ 1 > r + 1 from (187), we have (a, c) ∈ X1, and min{h(a, c), c} = c = b+ 1. Hence,

z(p1,a,b+1) =
a∑

i=1

Ei

2
+

(θ + 1)(δ + 1)

Sa+1,b+1

(246)

Using z(p2,a,b) ≥ z(p1,a,b+1), yields the inequality,

(EbSa+1,b+1 − δ − 1)(Eb+1Sa+1,b − θ) ≤ 0, (247)

which yields the result since EbSa+1,b+1 ≥ EbSa+1,b + 1 > δ + 1 (Eb > Eb+1 and (190)).

Case 3 b + 1 < c, and (a, b + 1, c) is a good-triplet: Due to (187), we have that, (a, b + 1)

belongs to the domain of e. Combining (189), c− 1 ≥ r+1 from (230), and Lemma 14-2-a, we

have that, (a, b + 1, c − 1) is a bad-triplet. Combining with the case description, we have that

e(a, b+ 1) = c. Since, b+ 1 < c ≤ n, we have that, (a, b+ 1) ∈ X2. Hence,

z(p2,a,b+1) =
a∑

i=1

Ei

2
+ Eb+1 (θ + 1) +

c∑
i=b+2

Ei + Ec (δ + 1− Eb+1Sa+1,b+1) . (248)

Using z(p2,a,b) ≥ z(p2,a,b+1), yields the inequality,

(Eb − Eb+1) (θ − EcSa+1,b) > 0, (249)

yields the result since Eb > Eb+1 (the inequality is strict due to assumption A1).
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Now, we construct a Lagrange multiplier, similar to case 1. Consider µ ∈ Rn, given by,

µk =



Ec

Ek
− 1

2
if a+ 1 ≤ k ≤ r

1− Ec

Ek
if r + 1 ≤ k ≤ b− 1

EcSa+1,b−1 + 1− θ if k = b

0 otherwise

, (250)

The above µ satisfies µ ≥ 0. If k ∈ [a+ 1, r], we have that,

µk =
Ec

Ek

− 1

2
≥ Ec

Ea+1

− 1

2
≥ 0, (251)

where the last inequality follows due to Lemma 18-1. If k ∈ [r + 1, b− 1], we have that,

µk = 1− Ec

Ek

≥ 1− Ec

Ec

≥ 0, (252)

If k = b, µk ≥ 0, is Lemma 18-3.

Using the above µ as a Lagrange multiplier for problem (P-1,2,..,r), we have the problem,

max
p, γ

a∑
j=1

pj
Ej

2
+

b−1∑
j=a+1

pjEc + pbEb(θ − EcSa+1,b−1) +
n∑

j=b+1

pjEj

s.t. p ∈ ∆n,r, λ ∈ R

(253)

Notice that due to Lemma 18, we have that Ej/2 ≥ Ec for j ∈ [1 : a], Ej ≥ Ec for j ∈ [b+1 : c],

Ej ≤ Ec for j ∈ [c + 1 : n], and (θ − EcSa+1,b−1) ≥ Ec. Hence, an optimal solution p for the

above problem is p = p2,a,b with arbitrary γ. Let, γ = Eb. Notice that from Lemma 3, part-2-b,

we have that (p1,a,b, γ) is feasible for (P-1,2,..,r). Also, notice that from the definition of µ,

we have µk > 0 implies p2,a,bk Ek = Eb. Hence, from Lemma 3, we have that (p2,a,b, γ) solves

(P-1,2,..,r), as desired.

Case 3: Best vector in A comes from A3

Let p3,b,c denote the best vector where (b, c) ∈ X3, and let a = g(b, c) > 0. Define

θ =
r − a

2
+ b− r (254)

and δ = r − a+ b− c. Now we prove the following lemma.

Lemma 19: We have that,

1) If c < n, then Ea

2
≥ Ec+1

2) Ea

2
Sa+1,b−1 + 1 ≥ θ
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3) Eb

(
θ − Ea

2
Sa+1,b−1

)
≥ Ea

2

4) 2Ec ≥ Ea

Proof:

1) From (194) we have that (a − 1, b) belongs to the domain of e. Combining a > 0 from

(194), c + 1 ≤ n from the statement description, Lemma 14-1-d, and (195), we have that,

(a− 1, b, c+ 1) is a good-triplet. Combining this with (196), we have that e(a− 1, b) = c+ 1.

Notice that, b < c+ 1 ≤ n from (194). Hence, (a− 1, b) ∈ X2. Hence,

z(p2,a−1,b) =
a−1∑
i=1

Ei

2
+ Eb

(
θ +

1

2

)
+

c∑
i=b+1

Ei + Ec+1 (δ + 1− EbSa+1,b) . (255)

Using z(p3,b,c) ≥ z(p2,a−1,b), yields,(
Ea

2
− Ec+1

)
(δ + 1− EbSa,b) ≥ 0, (256)

which establishes the desired inequality from (197).

2) We consider three cases. The cases make sense since b ≥ r + 1, and if b > r + 1, we have

that (a− 1, b− 1, c) ∈ [0 : r + 1]× [r + 1 : n]× [r + 1 : n] from (194).

Case 1 b = r + 1: This case reduces to EaSa+1,r ≥ r − a, which follows since Ea ≥ Ei ∀i ∈

[a+ 1 : r].

Case 2 b > r + 1 and (a − 1, b − 1, c) is a bad-triplet: Due to b − 1 ≥ r + 1, and (194), we

have that (b− 1, c) belongs to the domain of g. From (195), b− 1 ≥ r+ 1, and Lemma 14-1-a,

we have that, (a, b− 1, c) is a good-triplet. Combining with the case description, we have that

g(b−1, c) = a. Notice that b−1 < c ≤ n, and 0 < a ≤ r−1 from (194). Hence, (b−1, c) ∈ X3.

Hence,

z(p3,b−1,c) =
a∑

i=1

Ei

2
+ Eb−1 (θ − 1) +

c∑
i=b

Ei +
Ea

2
(δ − 1− Eb−1Sa+1,b−1) . (257)

Using z(p3,b,c) ≥ z(p3,b−1,c), yields the inequality,

(Eb − Eb−1)

(
θ − 1− Ea

2
Sa+1,b−1

)
> 0, (258)

yields the result since Eb−1 > Eb (the inequality is strict due to assumption A1).

Case 3 b > r+1, (a−1, b−1, c) is a good-triplet: Due to (194), we have that (a−1, c) belongs to

the domain of h. Combining the case description with (196), we have that h(a−1, c) = b−1. Since
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b−1 ≥ r+1, from the case description we have, (a−1, c) ∈ X1, and min{h(a−1, c), c} = b−1.

Hence,

z(p1,a−1,c) =
a−1∑
i=1

Ei

2
+

(
θ − 1

2

)
δ

Sa,b−1

+
c∑

i=b

Ei (259)

Using z(p3,b,c) ≥ z(p1,a−1,c), yields the inequality,(
Ea

2
Sa+1,b−1 − θ + 1

)
(EbSa,b−1 − δ) ≤ 0, (260)

which establishes the result from (197).

3) Notice that the above reduces to,

θ ≥ Ea

2
Sa+1,b. (261)

We consider three cases. The cases make sense since, b ≤ c by (194), and if c > b, we have to

have that (a, b+ 1, c) ∈ [0 : r + 1]× [r + 1 : n]× [r + 1 : n] from (194).

Case 1 b = c: From (195), we have that, h(a, c) ≥ b = c. Since c ≥ r + 1, we have that,

(a, c) ∈ X1. Moreover, min{h(a, c), c} = c = b. Hence,

z(p1,a,b) =
a∑

i=1

Ei

2
+

θδ

Sa+1,b

(262)

Using z(p3,b,c) ≥ z(p1,a,b), yields the inequality,(
Ea

2
Sa+1,b − θ

)
(EbSa+1,b − δ) < 0, (263)

which establishes the result from (197).

Case 2 b < c, and (a, b+ 1, c) is a good-triplet: Since b+ 1 ≤ c ≤ n, where the last inequality

follows from (194), we have that (b + 1, c) belongs to the domain of g. Combining (196),

b + 1 ≤ c ≤ n, with Lemma 14-2-a, we have that (a − 1, b + 1, c) is a bad-triplet. Combining

with the case description, we have that g(b+1, c) = a. Notice that b+1 ≤ c, and 0 < a ≤ r− 1

from (194). Hence, (b+ 1, c) ∈ X3. Hence,

z(p3,b+1,c) =
a∑

i=1

Ei

2
+ Eb+1 (θ + 1) +

c∑
i=b+2

Ei +
Ea

2
(δ + 1− Eb+1Sa+1,b+1) . (264)

Using z(p3,b,c) ≥ z(p3,b+1,c), yields the inequality,

(Eb − Eb+1)

(
θ − Ea

2
Sa+1,b

)
> 0, (265)

yields the result since Eb > Eb+1 (the inequality is strict due to assumption A1).
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Case 3 b < c, and (a, b+ 1, c) is a good-triplet: From (194), we have that (a, c) belongs to the

domain of h. Combining the case description with (195), we have that h(a, c) = b. Notice that

b ≥ r + 1 from (194). Hence, (a, c) ∈ X1, and min{h(a, c), c} = b. Hence,

z(p1,a,c) =
a∑

i=1

Ei

2
+

θδ

Sa+1,b

+
c∑

i=b+1

Ei (266)

Using z(p3,b,c) ≥ z(p1,a,c), yields the inequality,(
Ea

2
Sa+1,b − θ

)
(EbSa+1,b − δ) < 0, (267)

which establishes the result from (197).

4) We consider two cases. The cases make sense since b ≤ c from (194).

Case 1 b = c: Notice that from part 2 of the lemma,

θ − Ea

2
Sa+1,b−1 ≤ 1. (268)

Substituting this in part 3, we have the result.

Case 2 b < c: From (194), we have that, (a, b) belongs to the domain of e. Combining (196),

c− 1 ≥ b ≥ r + 1, from the case description, with Lemma 14-2-d, we have that, (a, b, c− 1) is

a bad-triplet. Combining with (195), we have that e(a, b) = c. Notice that b < c ≤ n, where the

last inequality follows from (194). Hence, (a, b) ∈ X2. Hence,

z(p2,a,b) =
a∑

i=1

Ei

2
+ Ebθ +

c∑
i=b+1

Ei + Ec (δ − EbSa+1,b) . (269)

Using z(p3,b,c) ≥ z(p2,a,b), yields,(
Ea

2
− Ec

)
(δ − EbSa+1,b) ≥ 0, (270)

which establishes the desired inequality due to (197)

Now, we construct a Lagrange multiplier, similar to case 1. Consider µ ∈ Rn, given by,

µk =



Ea

2Ek
− 1

2
if a+ 1 ≤ k ≤ r

1− E2

2Ek
if r + 1 ≤ k ≤ b− 1

Ea

2
Sa+1,b−1 + 1− θ if k = b

0 otherwise

, (271)
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The above µ satisfies µ ≥ 0. If k ∈ [a+ 1, r], we have that,

µk =
Ea

2Ek

− 1

2
≥ Ea

2Ea

− 1

2
= 0, (272)

If k ∈ [r + 1, b− 1], we have that,

µk = 1− Ea

2Ek

≥ 1− Ea

2Ec

≥ 0, (273)

where the last inequality follows due to Lemma 19-4

If k = b, µk ≥ 0, is Lemma 19-2.

Using the above µ as a Lagrange multiplier for problem (P-1,2,..,r), we have the problem,

max
p, γ

a∑
j=1

pj
Ej

2
+

b−1∑
j=a+1

pj
Ea

2
+ pbEb(θ −

Ea

2
Sa+1,b−1) +

n∑
j=b+1

pjEj

s.t. p ∈ ∆n,r, λ ∈ R

(274)

Notice that due to Lemma 19, we have that, Ej/2 ≥ Ea/2 for j ∈ [1 : a], Ej ≤ Ec+1 ≤ Ea/2

for j ∈ [c + 1 : n], Ej ≥ Ec ≥ Ea

2
for j ∈ [b + 1 : c], and Eb

(
θ − Ea

2
Sa+1,b−1

)
≥ Ea

2
. Hence,

an optimal solution p for the above problem is p = p3,b,c with arbitrary γ. Let, γ = Eb. Notice

that from Lemma 3, part-2-c, we have that (p3,b,c, γ) is feasible for (P-1,2,..,r). Also, notice that

from the definition of µ, we have µk > 0 implies p3,b,ck Ek = Eb. Hence, from Lemma 3, we

have that (p3,b,c, γ) solves (P-1,2,..,r), as desired.

Case 4: Best vector in A is p0.

Lemma 20: We have that,

Er

2
≥ Er+1. (275)

Proof: Notice that,

r − (r − 1) = 1 < Er+1Sr,r+1 = 1 +
Er+1

Er

. (276)

Hence, (r−1, r+1, r+1) is a good-triplet. Hence, h(r−1, r+1) ≥ r+1. Clearly, (r−1, r+1) ∈

X1. Also, min{h(r − 1, r + 1), r + 1} = r + 1. Hence,

z(p1,r−1,r+1) =
r−1∑
i=1

Ei

2
+

3

2Sr,r+1

(277)

Using z(p0) > z(p1,r−1,r+1), yields the desired inequality.
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In this case we can use µ = 0 as a Lagrange multiplier vector for (P-1,2,..,r), which gives

the problem,

max
p, γ

r∑
j=1

pj
Ej

2
+

n∑
j=r+1

pjEj

s.t. p ∈ ∆n,r, λ ∈ R

(278)

Due to Lemma 20, we have that p = p0 is an optimal solution for the above problem

with arbitrary γ. Let, γ = Er+1. From Lemma 3, part-2-d we have that (p0, γ) is feasible for

(P-1,2,..,r). Also, notice that µk = 0 for all k ∈ [1 : n]. Hence from Lemma 3, we have that

(p0, γ) solves (P-1,2,..,r), as desired.

APPENDIX F

ALGORITHM TO PROJECT ONTO ∆n,r

Algorithm 4: Projecting y sorted in the nonincreasing order onto ∆n,r

1 Define for all 1 ≤ a ≤ b ≤ n,

µa,b =

∑b
j=a yj − (r − a+ 1)

b− a+ 1
,Aa,b = 1{yb ≥ µa,b ≥ ya − 1}

Ba,b = 1{(b = n) or [(b < n) and (yb+1 < µa,b)]}

Ca,b = 1{(a = 1) or [(a > 1) and (ya−1 − 1 > µa,b)]}

g(a, b) = min{c : c ≥ b,Ba,c = 1}, h(a, b) = max{c : c ≤ a, Cc,b = 1}. (279)

2 Initialize (a1, b1) = (r, r).

3 for each t ∈ {1, 2, . . . } do

4 Set (at+1, bt+1) = (h(at, g(at, bt)), g(at, bt)).

5 if (at+1, bt+1) = (at, bt) then

6 Output x ∈ Rn, where xi = Π[0,1](yi − µat,bt).

7 end

8 end

Analysis of Algorithm 4: Fix y ∈ R. Notice that the problem of projection of y ∈ Rn onto
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∆n,r is,

min
z

1

2
∥z − y∥2

s.t. y ∈ ∆n,r

(280)

We assume, without loss of generality, that y is sorted in non-increasing order (Notice that if y

is not sorted, we could sort y, perform the projection, and rearrange the elements according to

the original order. This works since the set ∆n,r is closed under the permutation of entries of

its element vectors).

Now consider L(z, µ) for µ ∈ R given by L(z, µ) = 1
2
∥z − y∥2 + µ

(∑n
j=1 zj − r

)
, and the

problem,
(P6-µ) min

z
L(z, µ)

s.t. z ∈ [0, 1]n
(281)

for a fixed µ ∈ R. Let us assume the existence of a µ∗ ∈ R such that the solution z∗ of (P6-µ∗)

defined in (281) satisfies,
∑n

j=1 z
∗
j = r. Notice that z∗ is optimal for the original problem since

for any z ∈ ∆n,r,

1

2
∥z − y∥2 = L(z, µ∗) ≥ L(z∗, µ∗) =

1

2
∥z∗ − y∥2. (282)

Hence, we focus on finding such a µ∗ and the corresponding z∗. First, we focus on solving

(P6-µ) defined in (281) for a fixed µ ∈ R. Notice that (P6-µ) is a separable quadratic program

in the entries of z. Hence, the optimal zj can be obtained by projecting the unconstrained optimal

value for each entry of z onto [0, 1]. Hence, the solution is zj = Π[0,1](yj −µ) for all j ∈ [1 : n],

where Π[0,1] denotes the projection operator onto [0, 1].

Now we need to find µ∗ such that the optimal solution z∗ of (P6-µ∗) defined in (281) satisfies

z∗ ∈ ∆n,r. Hence, we require µ∗ ∈ R such that
n∑

j=1

Π[0,1](yj − µ∗) = r. (283)

For µ ∈ R, define the set Kµ = {i; 1 ≤ i ≤ n, µ+ 1 ≥ yi ≥ µ}. Notice that for each µ ∈ R, Kµ

is either the empty set or a set of the form [a : b] where 1 ≤ a ≤ b ≤ n.

We have two possibilities if Kµ∗ is the empty set. The first is µ∗ > yj for all j ∈ [1 : n] in

which case we have
∑n

j=1 Π[0,1](yj − µ∗) = 0 which does not agree with (283). The second is

µ∗ < yj − 1 for all j ∈ [1 : n] in which case we have
∑n

j=1Π[0,1](yj − µ∗) = n. This is only
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possible when n = r, in which case the only solution to the problem is the trivial solution of

player 1 choosing all the resources.

Hence, we will focus on the case of non-empty Kµ∗ . Let Kµ∗ = [a∗ : b∗] where 1 ≤ a∗ ≤

b∗ ≤ n. This is equivalent to µ∗ satisfying the conditions,

yb∗ ≥ µ∗ ≥ ya∗ − 1

(b∗ = n) or [(b∗ < n) and (yb∗+1 < µ∗)]

(a∗ = 1) or [(a∗ > 1) and (ya∗−1 − 1 > µ∗)] (284)

Define for each a, b ∈ [1 : n] the real number µa,b as

µa,b =

∑b
j=a yj − (r − a+ 1)

b− a+ 1
. (285)

Now, notice that (283) translates to,

µ∗ = µa∗,b∗ , (286)

where Kµ∗ = [a∗ : b∗]. Combining (286) and (284), we have that if we can find a∗, b∗ (1 ≤ a∗ ≤

b∗ ≤ n) such that

yb∗ ≥ µa∗,b∗ ≥ ya∗ − 1

(b∗ = n) or [(b∗ < n) and (yb∗+1 < µa∗,b∗)]

(a∗ = 1) or [(a∗ > 1) and (ya∗−1 − 1 > µa∗,b∗)] (287)

are all satisfied, then we are guaranteed that the solution z∗ of (P6-µa∗,b∗) defined in (281)

satisfies z∗ ∈ ∆n,r. For each a, b ∈ [1 : n], we will denote the three conditions,

Aa,b = 1{yb ≥ µa,b ≥ ya − 1}

Ba,b = 1{(b = n) or [(b < n) and (yb+1 < µa,b)]}

Ca,b = 1{(a = 1) or [(a > 1) and (ya−1 − 1 > µa,b)]} (288)

Hence, our goal is to find (a∗, b∗) such that Aa∗,b∗ = 1, Ba∗,b∗ = 1, and Ca∗,b∗ = 1.

An easy way to find a∗, b∗ is to go through all a, b ∈ [1 : n] and check whether the above

three conditions are satisfied. This approach has to go through n2 pairs (a, b). We will provide an

alternative approach that is efficient and goes through at most n pairs (a, b). With this approach,

June 2023 DRAFT



75

we can also establish the existence of a∗, b∗ ∈ [1 : n] satisfying Aa∗,b∗ = 1, Ba∗,b∗ = 1, and

Ca∗,b∗ = 1.

Given a, b ∈ [1 : n], define g(a, b) as the minimum integer in [b : n] such that Ba,g(a,b) = 1

(Notice that Ba,n = 1, so such an integer always exists). Similarly, define h(a, b) as the maximum

integer in [1 : a] such that Ch(a,b),b = 1 (Notice that C1,b = 1, so such an integer always exists).

We have the following claim.

Claim 1: If Aa,b = 1 then we have that Aa,g(a,b) = 1 and Ah(a,b),b = 1

Proof: We only prove that Aa,g(a,b) = 1. The other part follows from a similar argument.

First, notice that if g(a, b) = b, we are done. Hence, we will assume g(a, b) > b. We prove a

stronger statement. We prove that Aa,c = 1 for all c ∈ [b : g(a, b)]. We use induction for the proof.

Notice that the base case c = b is true. Now assume that Aa,c = 1 for some c ∈ [b : g(a, b)− 1].

We prove that Aa,c+1 = 1. Since c ∈ [b : g(a, b)− 1], from the definition of function g, we have

that Ba,c = 0. Also since c ≤ g(a, b) − 1, we have that c < n. Hence, using the definition of

Ba,c, we have that yc+1 ≥ µa,c. Hence,

µa,c+1 =
µa,c(c− a+ 1) + yc+1

c− a+ 2
≤ yc+1(c− a+ 1) + yc+1

c− a+ 2
= yc+1, (289)

where for the first equation we have used the definition of µa,c+1 from (285). Also,

µa,c+1 =
µa,c(c− a+ 1) + yc+1

c− a+ 2
= µa,c +

yc+1 − µa,c

c− a+ 2
≥(a) µa,c ≥(b) ya − 1, (290)

where (a) follows since yc+1 ≥ µa,c and (b) follows since Aa,c is true by assumption. From the

above two inequalities, we have that Aa,c+1 = 1 as desired.

Now consider the following sequence S of tuples S = {(a1, b1), (a2, b2), . . . }, where (a1, b1) =

(r, r), and (ai, bi) = (h(ai−1, g(ai−1, bi−1)), g(ai−1, bi−1)) for each i > 1. We have the following

claim regarding S.

Claim 2: We have that Aai,bi = 1 and Cai,bi = 1 for all i ∈ {2, 3, . . . }.

Proof: The fact that Cai,bi = 1 for all i ∈ {2, 3, . . . } follows from the definition of ai, bi

and the function h, since (ai, bi) = (h(ai−1, g(ai−1, bi−1)), g(ai−1, bi−1)) for all i > 1. For the

other part we use induction. It can be easily checked that Aa1,b1 = Ar,r = 1. Assume Aai,bi = 1

for some i ≥ 1. Hence, we have from claim 1 that Aai,g(ai,bi) = 1. Applying claim 1 again we

have that Ah(ai,g(ai,bi)),g(ai,bi) = 1 which completes the induction.
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Now notice that the sequence S satisfies,

ai+1 ≤ ai, bi+1 ≥ bi (291)

for all i ∈ {1, 2, . . . }. This is because bi+1 = g(ai, bi) ≥ bi by definition of function g and

ai+1 = h(ai, g(ai, bi)) ≤ ai by definition of function h. Additionally, from the definition of

sequence S, it can be easily seen that if (ai+1, bi+1) = (ai, bi) for some i ≥ 1, then we have

(aj, bj) = (ai, bi) for all j ≥ i. Combining the above property with (291), we have that the

sequence S is eventually constant. In particular, there exists i ≥ 1 such that (aj, bj) = (ā, b̄) for

all j ≥ i. It is also not difficult to see that the minimum such i satisfies i ≤ n. To see this,

notice that,

n− 1 ≥ bi − ai =
i−1∑
j=1

[bj+1 − bj + aj − aj+1] ≥ (i− 1), (292)

where the last inequality follows since for each j < i, we should have aj+1 ≤ aj and bj+1 ≥ bj ,

and at least one of the two inequalities is strict (if not we will have (aj+1, bj+1) = (aj, bj) which

will contradict the minimality of i).

From claim 2 we have that Aā,b̄ = 1 and Cā,b̄ = 1. We also prove that Bā,b̄ = 1. To prove

this, pick any j > i. We have that (aj+1, bj+1) = (h(aj, g(aj, bj)), g(aj, bj)), which reduces to

(ā, b̄) = (h(ā, g(ā, b̄)), g(ā, b̄)). Hence, we have b̄ = g(ā, b̄). Notice that since from the definition

of g, we have that Bā,g(ā,b̄) = 1 we have that Bā,b̄ = 1 as desired. Hence, (a∗, b∗) exists and is

equal to (ā, b̄).

To find (ā, b̄) we enumerate the sequence S. As established by (292), the sequence becomes

constant before n steps. Hence, this process is more efficient compared to the naive scheme

which evaluates µa,b values for all a, b ∈ [1 : n].

Note: In Algorithm 4 although we have defined µa,b, g(a, b), h(a, b), Aa,b, Ba,b, and Ca,b for all

a, b ∈ [1 : n], we only require computing above for (a, b) tuples in S.
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