
Received: 11 October 2024 / Accepted: 15 September 2025
© The Author(s) 2025

	
 Mevan Wijewardena
mpathira@usc.edu

Michael J. Neely
mjneely@usc.edu

1	 Department of Electrical and Computer Engineering, University of Southern California, 3740
McClintock Ave, Los Angeles, California 90089, USA

Online Multi-player Resource-Sharing Games with Bandit
Feedback

Mevan Wijewardena1 · Michael J. Neely1

Dynamic Games and Applications
https://doi.org/10.1007/s13235-025-00676-w

Abstract
This paper considers an online multi-player resource-sharing game with bandit feedback.
Multiple players choose from a finite collection of resources in a time slotted system. In
each time slot, each resource brings a random reward that is equally divided among the
players who choose it. The reward vector is independent and identically distributed over
the time slots. The statistics of the reward vector are unknown to the players. During
each time slot, for each resource chosen by the first player, they receive as feedback the
reward of the resource and the number of players who chose it, after the choice is made.
We develop a novel Upper Confidence Bound (UCB) algorithm that learns the mean
rewards using the feedback and maximizes the worst-case time-average expected reward
of the first player. The algorithm gets within O(log(T)/

√
T) of optimality within T time

slots. The simulations depict fast convergence of the learnt policy in comparison to the
worst-case optimal policy.

Keywords  Congestion games · Potential games · Fair reward allocation · Worst-case
expected reward maximization

1  Introduction

In this paper, we consider the following game with m ≥ 2 players numbered 1, 2, . . . , m, and
n ≥ 2 resources numbered 1, 2, · · · , n. The game evolves in slotted time t ∈ {1, 2, . . . }. The
vector W (t) ∈ Rn denotes the random reward vector at time t ∈ {1, 2, . . . }. In particular,
for each i ∈ {1, 2, . . . , n} and each t ∈ {1, 2, . . . }, Wi(t) ≥ 0 denotes the reward offered by
resource i at time t. We assume that W (t) are i.i.d. with E{W (t)} = E = [E1, E2, . . . , En].
The vector E is unknown to the players. During each time slot, each player selects r resources

https://doi.org/10.1007/s13235-025-00676-w
http://crossmark.crossref.org/dialog/?doi=10.1007/s13235-025-00676-w&domain=pdf&date_stamp=2025-11-21

Dynamic Games and Applications

without knowing the other player’s selections (assume that 0 < r ≤ n), and without knowl-
edge of W (t). During time slot t, for each k ∈ {1, 2, . . . , n}, each player selecting resource
k receives a reward of Wk(t)/Sk(t) from resource k, where Sk(t) is the number of players
choosing resource k during time slot t. For each i ∈ {1, 2, . . . , m}, let Ai(t) denote the set
of resources chosen by player i during time slot t. During time slot t, after the selection of
resources, player i receives (Wk(t), Sk(t)) for k ∈ Ai(t) as feedback.

The total reward received by player i during time slot t is
∑

k∈Ai(t) Wk(t)/Sk(t). The
time-average expected reward of player i in a finite time horizon of T time slots is

	

1
T

T∑
t=1

E




∑
k∈Ai(t)

Wk(t)
Sk(t)


 .

The goal is to design policies to maximize the time-average expected reward of player
1. However, this is not possible since player 1 does not have control over the policies of
the other players. Hence, we focus on maximizing the worst-case time-average expected
reward of player 1, which we define in the sections below.

For k ∈ {1, 2, . . . , n} and t ∈ {1, 2, . . . }, define Xk(t) =
∑m

i=2 1[k∈Ai(t)]. Hence,
Xk(t) is the number of players (other than player 1) choosing resource k during time slot
t. Also, we have Sk(t) = 1[k∈A1(t)] + Xk(t). For each t, it can be shown that X(t) ∈ J ,
where

	
J =

{
x ∈ {0, 1, . . . , m − 1}n

∣∣∣∣∣
n∑

j=1

xj = (m − 1)r

}
.� (1)

Additionally, for a given t ∈ {1, 2, . . . }, it can be easily shown that for any x ∈ J , there
exists a way for players 2 to m to choose resources such that X(t) = x.

1.1  Time Average Expected Reward

Define H(t) = {(A1(τ), {Wk(τ), Sk(τ); 1 ≤ k ≤ n, k ∈ A1(τ)}); 1 ≤ τ < t}, the his-
tory up to time t. Given H(t), the action of player 1 at time t is conditionally independent
of the other player’s actions at time t. Define the random vector p(t) with components
pk(t) = E{1[k∈A1(t)]|H(t)}. Since

∑n
k=1 1[k∈A1(t)] = r, it can be shown that p(t) ∈ ∆n,r,

where ∆n,r is the (n, r)-hypersimplex given by

	
∆n,r =

{
p ∈ Rn

+ :
n∑

i=1

pi = r, pi ∈ [0, 1] ∀i ∈ {1, 2, . . . , n}

}
.� (2)

Also, notice that given p ∈ ∆n,r, we can use the Madow’s sampling technique (see for exam-
ple [1]) to sample an action set A ⊂ {1, 2, . . . , n} such that, |A| = r, and pk = E{1[k∈A]}
for each k ∈ {1, 2, . . . , n}.

Notice that we can write the time-average expected reward R(T) of player 1 in a finite
time horizon of T time slots as

Dynamic Games and Applications

	

R(T) = 1
T

T∑
t=1

n∑
k=1

E
{

Wk(t)1[k∈A1(t)]

1 + Xk(t)

}
=(a)

1
T

T∑
t=1

n∑
k=1

EkE
{

1[k∈A1(t)]

1 + Xk(t)

}

= 1
T

T∑
t=1

n∑
k=1

EkE

{
E

{
1[k∈A1(t)]

1 + Xk(t)

∣∣∣∣∣H(t)

}}

=(b)
1
T

T∑
t=1

n∑
k=1

EkE

{
E

{
1

1 + Xk(t)

∣∣∣∣∣H(t)

}
E

{
1[k∈A1(t)]|H(t)

}
}

= 1
T

T∑
t=1

n∑
k=1

EkE

{
E

{
1

1 + Xk(t)

∣∣∣∣∣H(t)

}
pk(t)

}

=(c)
1
T

T∑
t=1

n∑
k=1

EkE
{

pk(t)
1 + Xk(t)

}
= 1

T

T∑
t=1

E{f(p(t), X(t))},

� (3)

where (a) follows since W (t) is independent of the actions of players at time t, (b) follows
since 1[k∈A1(t)] is independent of Xk(t) conditioned on H(t), (c) follows since p(t) is an
H(t)-measurable random variable, and the function f : Rn

+ × Zn
+ → R is defined as

	
f(p, x) =

n∑
k=1

Ekpk

1 + xk
.� (4)

The time-average expected reward of player 1 is

	
R:= lim inf

T →∞
R(T).� (5)

1.2  Worst-Case Time Average Expected Reward

Notice that since player 1 does not have access to X(t) when taking action during time slot
t, they cannot directly maximize R defined in (5). But notice that for fixed p ∈ ∆n,r, the
worst-case value of f(p, x) is fworst(p), where

	
fworst(p) = min

x∈J
f(p, x).� (6)

Combining with (3), the worst-case time-average expected reward in a finite time horizon
of T time slots is given by

	
Rworst(T) = 1

T

T∑
t=1

E{fworst(p(t))}.� (7)

Hence, the worst-case time-average expected reward of player 1 is

	
Rworst = lim inf

T →∞
Rworst(T).� (8)

Dynamic Games and Applications

Instead of maximizing R, player 1 can take decisions to maximize Rworst without knowl-
edge of the decisions of other players.

From (7) and (8), we have that the maximum possible value of Rworst is fworst,∗, where

	
fworst,∗ = max

p∈∆n,r

min
x∈J

f(p, x) = max
p∈∆n,r

fworst(p),� (9)

that is achieved by using the policy p(t) = p∗ in each time slot, where

	
p∗ ∈ arg max

p∈∆n,r

fworst(p).� (10)

The fworst function is unknown to player 1 because the function f defined in (4) is in terms
of the unknown Ek values. Hence, we aim to design an algorithm that achieves a worst-case
time-average expected reward close to fworst,∗ using the bandit feedback.1

1.3  Related Work

The main challenge of applying online optimization techniques such as online gradient
descent [2] to the above problem is due to the fact that we do not know the function f since
we do not know E. The problem shares certain similarities with the problems of multi-
armed bandit learning (MAB) [3, 4], adversarial bandit learning [5], online-convex optimi-
zation [6], online-convex optimization with multi-point bandit feedback [7], and stochastic
convex optimization [8].

Multi-armed bandit learning is extensively studied in the literature. The classical MAB
problem consists of a fixed number of arms each with fixed mean reward. A player chooses
an arm in each iteration of the game, without knowledge about the mean rewards, where
after the choice is made the reward of the chosen arm is revealed to the player. The goal is
to learn to choose the arm with the highest mean reward. An algorithm for the MAB prob-
lem has to explore all the arms in order to learn the best arm. But in doing so, the player
also chooses arms with low mean reward, which affects the long term reward of the player.
Upper confidence bound based algorithms, where the algorithm maintains an upper bound
on the mean cost of each arm, are popular in the MAB literature [5, 9]. Our problem cannot
be addressed using classical MAB approaches since the reward not only depends on the
chosen resource, but also on the choices of other players. Another related problem is adver-
sarial bandit learning. Unlike the worst-case approach, the adversarial bandit framework
cannot be used to obtain utility guarantees for player 1 that are independent of the actions
of the other players.

The framework of online optimization also shares similarities with our work since our
goal is to design an online algorithm to minimize fworst(p). However, notice that fworst
depends on the unknown vector E. We also do not have access to an unbiased estimate or
an unbiased gradient estimate of the function fworst due to its definition in (6). Hence, the
work on online-convex optimization where partial information on the underlying reward

1 One can relax the constraint of each user choosing exactly r resources by allowing each user to select at most
r resources. Since the rewards are assumed to be nonnegative, this will not affect fworst. A formal proof of
this statement can also be found in our technical report [52].

Dynamic Games and Applications

functions are revealed, such as online-convex optimization with multi-point bandit feed-
back, and the approaches based on stochastic gradient descent are also not applicable. Our
problem is more similar to the work of [10] on zero-sum matrix games with bandit feed-
back. However, the above work considers a two-player scenario where both players receive
the actions and the rewards of themselves and the opponent as feedback.

Our game model has been studied for the offline non-stochastic case with full informa-
tion on E under the more general framework of resource-sharing games [11], also known as
congestion games. In these games, the per-player reward of a resource is a general function
of the number of players selecting the resource. Also, an action for a player is a subset of the
resources, where the allowed subsets make up the player’s action space. Resource-sharing
games have also been extended to various stochastic settings [12, 13]. Problems similar to
our work have been studied in the context of adversarial resource-sharing games. The work
of [14] considers an adversarial resource-sharing game where each player chooses a single
resource from a collection of resources, after which an adversary chooses the resource cho-
sen by the maximum number of players. Also, non-atomic congestion games with malicious
players have been considered through the work of [15]. The above works assume that E is
known to all the players.

We have simplified the general resource-sharing game model described above in two
ways. First, we assume a fair-reward allocation model, where we have assumed the exis-
tence of a reward for each resource, which is divided equally between the players selecting
it. Second, we have assumed simple action spaces for players by allowing each player to
select an arbitrary subset of r resources. Resource-sharing games with special per-player
reward definitions have been considered in the literature. One such notable case is when
the per-player reward of a resource is nondecreasing in the number of players selecting the
resource. These games are called cost-sharing games [16]. The particular case when the total
cost of a resource is divided equally among the players choosing it is called fair cost-sharing
games. In such a model, a player would prefer to select resources selected by many players.
In the fair reward allocation model considered in our work, players have the opposite incen-
tive to select resources selected by a small number of players.

One application of our model is multiple access control (MAC) in communication sys-
tems, where multiple users access communication channels, and the data rate of a channel
is shared amongst the users who select it [17–19]. Here, a channel can be shared using
Time Division Multiple Access (TDMA) or Frequency Division Multiple Access (FDMA),
where in TDMA, the channel is time-shared among the users [20, 21], whereas in FDMA,
the channel is frequency-shared among the users [22]. In both cases, the total data rate
supported by the channel can be considered the reward of the channel. Here, limiting the
number of channels accessed by a single user in a given time slot is desirable. Additionally,
the channel data rate should be shared among the users accessing the channel.

The worst-case expected reward is an important objective different from Nash-equilib-
rium [23, 24] and correlated equilibrium [25–27]. The problem of finding an approximate
Nash equilibrium of a congestion game with bandit feedback has been considered [28].
However, implementing the algorithms by [28] requires cooperation among players. In
contrast, the worst-case approach requires no cooperation among the players. Additionally,
player 1 does not have to make assumptions about other players’ strategies. Hence, under-
standing the worst-case expected reward is important even when the other players are not
necessarily playing to hurt player 1. However, in practice, some players play just to hurt oth-

Dynamic Games and Applications

ers. One particular example arises in military communications. Consider a multiple access
communication system used in a military setting (for instance, consider the TDMA scheme
considered in [21], which has a similar structure to our model). Here, some users may trans-
mit to disrupt the communication capabilities of other users. Our formulation is applicable
even when the other users form a coalition with the intention of reducing the data rate of
a single user. Another motivation for the worst-case objective of this paper is to quantify
the degree of punishment that can be inflicted on a particular user. This value is useful, for
example, in repeated game algorithms that design punishment modes into the strategy space
in order to discourage deviant behavior [27, 29].

1.4  Background on Resource-Sharing Games

The resource-sharing game was first studied by [11]. These games, also called congestion
games, fall under the general category of potential games [30]. In potential games, the effect
of any player changing policies is captured by the change of a global potential function. Var-
ious extensions to the classical resource sharing game introduced by [11] have been stud-
ied in the literature [31]. Some such extensions are stochastic resource-sharing games [12,
13], weighted resource-sharing games [32], games with player-dependent reward alloca-
tion [33], games with resources having preferences over players [34], and singleton games,
where each player is only allowed to choose a single resource [35, 36].

Also similar to resource-sharing games are resource allocation games [37, 38]. In these
games, a resource must be fairly divided among claimants claiming a certain portion. There
is also work combining resource-sharing games with bandits and strategic experimentation.
The work of [39] considers a two-player game where players continually choose between
their private risky arm and a shared safe arm. Only one player can activate the safe arm at
any given time, which guarantees a payoff. This congestion effect on the safe arm gives
rise to strategic consideration among the players. These works are based on the model of
multi-agent, multi-armed bandit problems introduced by [40]. Here, multiple players are
faced with the same multi-armed bandit problem. In contrast to the classic single-agent set-
ting, players can learn from other players’ feedback, resulting in some players being able to
free-ride on other players’ experiments. This phenomena induces strategic experimentation.

Resource-sharing games have applications in multiple-access [17], network selec-
tion [41], network design [42], spectrum sharing [43], resource sharing in wireless net-
works [44], load balancing networks [45], radio access selection [46], service chains [47],
and congestion control [48]

1.5  Contributions

We study the problem of maximizing the worst-case time average expected reward of online
resource-sharing games with a fair-reward allocation model in the presence of bandit feed-
back on the mean rewards of the resources. We assume a model where in each time slot,
each player is allowed to choose any r element subset of the n available resources, and the
reward of a resource is shared among the users selecting it. We propose a novel algorithm
combining the upper confidence bound technique with Madow’s sampling technique and
Euclidean projection onto the (n, r)-hypersimplex, to maximize the worst-case time average
expected reward of player 1. In particular, in each time slot of the algorithm, we find p(t) in

Dynamic Games and Applications

the (n, r)-hypersimplex, after which we sample the r resources for player 1 using Madow’s
sampling technique. The algorithm gets within O(log(T)/

√
T) of optimality in a finite

time-horizon of T time slots. The parameters of the algorithm do not depend on T. Hence,
the above guarantee can be achieved even if the time horizon T is unknown.

1.6  Notation

We use calligraphic letters to denote sets. Vectors and matrices are denoted in boldface
characters. For integers n and m, we denote by [n : m] the set of integers between n and
m inclusive. Also, we use N = {1, 2, 3, . . . } to denote the set of positive integers and
N0 = {0, 1, 2, . . . } to denote the set of non-negative integers.

2  Worst-Case Expected Reward Maximization

First we state our assumptions.
A1	 The collection {W (t); 1 ≤ t} is independent and identically distributed and satisfies

Wi(t) ≥ 0 for all t ∈ N and i ∈ [1 : n]. Our formulation does not require the compo-
nents of W (t) to be mutually independent for a particular t ≥ 1.

A2	 We have Wk(t) = Ek + ηk(t) for all 1 ≤ k ≤ n, where ηk(t) for t ≥ 1 and
k ∈ [1 : n] are zero-mean, 1-sub-Gaussian random variables.

 Before moving on to the main results of the paper, we consider the problem of finding
fworst,∗ and p∗ when E is known, where fworst,∗ and p∗ are defined in (9) and (10),
respectively.

2.1  Finding fworst,* with Known E

If E is known, given p ∈ ∆n,r, the problem of finding fworst(p) has been well studied
in the literature. In particular, we can find x∗ ∈ arg minx∈J f(p, x). In Appendix C, we
provide the algorithm for completeness. Hence, we can use standard min-max optimization
techniques such as min-oracle algorithm [49] to find fworst,∗ and p∗. Also, since J is a
finite set, and the function f(·, x) is concave for all x ∈ J , from the Danskin’s theorem
(see proposition 5.4.9.(b) of [50]), we can calculate a subgradient of fworst at p ∈ ∆n,r
as ∇pfworst(p) = ∇pf(p, x∗) where x∗ ∈ arg minx∈J f(p, x). Hence, we can also use
standard subgradient descent with Euclidean projections onto ∆n,r (see Algorithm 4 to
project onto ∆n,r) to find fworst,∗.

The work of [51] finds fworst,∗ and p∗ explicitly for the case m = 2, r = 1. We discuss
the solution of this case in Sect. 2.1.1. In Sect. 2.1.2, we extend this to the case m = 3, r = 1.
These explicit solutions provide a fast way to find fworst,∗ and provide insight into the
structure of optimal p∗. For these two sections we will use the notation ∆n = ∆n,1.

2.1.1  Case m = 2, r = 1

In the following theorem, we restate the result of [51].
Theorem 1  Consider the special case m = 2 , r = 1 with n ∈ N. Without loss of gen-
erality, assume that E satisfies Ek ≥ Ek+1 for all k ∈ [1 : n − 1]. Define the sequence

Dynamic Games and Applications

(Vi ; 1 ≤ i ≤ n) according to Vi = i− 1
2∑i

k=1
1

Ek

. Let v = arg max1≤i≤n Vi , where arg max

returns the least index in the case of ties. Then, p∗ can defined by

	
p∗

k =

{ 1
Ek∑v

j=1
1

Ej

if 1 ≤ k ≤ v

0 otherwise.
� (11)

Proof  See [51]. □

Assume player 1 follows the policy p∗ in Theorem 1. It can be shown that the worst-case
for p∗ occurs when player 2 always chooses resource 1. Consider the strategy profile where
player 1 uses p∗ and player 2 always chooses resource 1. It can be shown that player 2 can-
not increase their reward by unilaterally deviating from the above profile. See the technical
report [52] for the proof of this fact. Notice that this may not be a Nash equilibrium since
p∗ may not be the best response of player 1 to the strategy of player 2. However, this prop-
erty incentivizes player 2 to use the above strategy, even if they do not care about hurting
player 1. The above property is not true for general m, r. When m > 2, players [2 : m] can
increase the congestion of resources with high mean rewards to reduce the expected reward
of player 1. In such a scenario, a player in [2 : m] may increase their reward by switching to
a resource with a less mean reward and less congestion. However, there are special cases in
which the above property is true even when m > 2. One such example is discussed in the
case m = 3, r = 1.

2.1.2  Case m = 3, r = 1

We first focus on solving the problem minx∈J f(p, x) for given p ∈ ∆n.

Lemma 1  Consider the special case m = 3 , r = 1 with n ∈ N satisfying n ≥ 2 , and a
fixed p ∈ ∆n . Let a = arg max1≤i≤n Eipi , and b = arg max1≤i≤n,i ̸=a Eipi , where we
assume that arg max returns the least index in the case of ties. Define the two vectors
x1 , x2 ∈ J , where

	
x1

k =
{ 2 ifk = a,

0 otherwise, and x2
k =

{ 1 ifk ∈ {a, b},
0 otherwise. � (12)

Then x∗ ∈ arg minx∈J f (p, x) can be given in two cases. 1) Eapa ≥ 3Ebpb: We have
x∗ = x1 . 2) Eapa < 3Ebpb: We have x∗ = x2 .

Proof  Since x∗ ∈ J , we know x∗ has nonnegative components that sum to 2. If x∗ has
only one nonzero component at some index k ∈ {1, . . . , n}, then x∗

k = 2 and f is minimized
by choosing k = a, so assignment x1 holds. Else, x∗ has exactly two nonzero components
at indices k, j ∈ [1 : n] (k ̸= j) and f is minimized by choosing k = a and j = b, so assign-
ment x2 holds. It remains to compare the two assignments.

Under x1: f(p, x1) = paEa

3 + pbEb +
∑

k ̸∈{a,b} pkEk =
∑n

k=1 pkEk − 2paEa

3 .

Under x2: f(p, x2) = paEa

2 + pbEb

2 +
∑

k ̸∈{a,b} pkEk =
∑n

k=1 pkEk − paEa

2 − pbEb

2

Dynamic Games and Applications

Comparing the two cases, we have that for assignment x1, we require Eapa ≥ 3Ebpb
and for assignment x2, we require Eapa < 3Ebpb. Hence, we are done. □

The following theorem introduces the solution of the case m = 3, r = 1.
Theorem 2  Consider the special case m = 3 , r = 1 with n ∈ N satisfying n ≥ 2 . Without
loss of generality, assume that E satisfies Ek ≥ Ek+1 for all k ∈ [1 : n − 1]. Define the
two sequences (Ui ; 1 ≤ i ≤ n) and (Vi ; 2 ≤ i ≤ n) according to Ui = i

3
E1

+
∑i

k=2
1

Ek

 and

Vi = i−1∑i

k=1
1

Ek

. Let u = arg max1≤i≤n Ui , and v = arg max2≤i≤n Vi , where arg max

returns the least index in the case of ties. Then, p∗ can be described under two cases.

Case 1: If Vv > Uu ,

	
p∗

k =

{ 1
Ek∑v

j=1
1

Ej

if 1 ≤ k ≤ v

0 otherwise.
� (13)

Case 2: If Uu ≥ Vv ,

	

p∗
k =




3
E1

3
E1

+
∑u

j=2
1

Ej

if k = 1
1

Ek
3

E1
+

∑u

j=2
1

Ej

if 2 ≤ k ≤ u

0 otherwise.

� (14)

Proof  Given in Appendix B. □

It is interesting to note the variation of choice probabilities in both cases of the theorem.
In case 1, player 1 first chooses a set of resources [1 : v] (v resources with the highest mean
rewards) to be chosen with nonzero probability. Then player 1 assigns probability p∗

k for
k ∈ [1 : v] such that the p∗

k ∝ 1/Ek. This behavior can be explained as follows. First, player
1 never chooses resources with mean rewards below a certain threshold. Second, within the
collection of resources with relatively high mean rewards, player 1 is tempted to choose
resources with lower mean rewards with high probability since, in the worst case, opponents
choose the rewards with the highest mean rewards.

In Case 2, a similar behavior can be observed. Player 1 first chooses a set of resources
[1 : u] to be chosen with nonzero probability. However, now player 1 assigns probability
p∗

k for k ∈ [1 : u] such that p∗
1 ∝ 3/E1 and p∗

k ∝ 1/Ek for k ∈ [2 : u]. In particular, player
1 chooses the first resource with a higher probability. To see this clearly, consider the two
scenarios in Fig. 1, where we consider two possibilities of E for n = 10 (Scenario 1 and
Scenario 2). Figure 1-Left denotes the plot of E for the two scenarios. Although in the two
scenarios, E is different only in E1 by 0.1, Scenario 1 belongs to Case 1 of Theorem 2,
whereas Scenario 2 belongs to Case 2. Figure 1-Right shows the higher choice probability
of resource 1 in Scenario 2. Here, the mean reward of the first resource is high enough to
give a high per-player reward even if many players select it.

Dynamic Games and Applications

Notice that in both scenarios, we have 1 ∈ arg max1≤i≤n Eip
∗
i , and

2 ∈ arg max1≤i≤n,i̸=1 Eip
∗
i . Also, since Scenario 1 belongs to Case 1 of Theorem 2, we

have p∗
1E1 < 3p∗

2E2. Hence, from Lemma 1, we have that the worst-case for p∗ occurs
when player 2 always chooses resource 1 and player 3 always chooses resource 2 (or vice
versa). Using a similar argument, one can establish that in Scenario 2, the worst-case for
player 1 occurs when player 2 and player 3 always choose resource 1. Assuming player 1
plays the strategy p∗, and the other two players play the strategies that give the worst-case to
p∗, the expected reward vector of the three players in Scenario 1 is (4.52, 7.87, 5.57). It turns
out that in the above strategy profile, the strategies of players 2 and 3 are the best responses
for the other two players. In fact this property holds more generally when m = 3, r = 1, and
the solution comes from Case 1 of Theorem 2 as proved in [52]. However this is not true in
Scenario 2, where the same vector is (4.54, 3.79, 3.79).

2.2  Bandit Algorithm

Now, we move on to the algorithm and analysis. Before introducing the algorithm, we begin
with a few definitions and some preliminary results that are useful.

Our algorithm, provided in Algorithm 1 below, uses the first n time slots as an initial
exploration phase that obtains at least one sample of the reward of each of the n resources.
The main part of the algorithm starts in time slot n + 1.

For all t ∈ {n + 1, n + 2, . . . } and k ∈ [1 : n] define nk(t) as the number of times
player 1 chooses resource k before time slot t. Formally, nk(t) =

∑t−1
τ=1 1[k∈A1(τ)], where

A1(t) denotes the set of resources chosen by player 1 during time slot t. Notice that due
to initial exploration phase of Algorithm 1, we have that nk(t) ≥ 1 for all k ∈ [1 : n] and
t ∈ {n + 1, n + 2, . . . }. For each t ∈ {n + 1, n + 2, . . . } and k ∈ [1 : n], define

	
Ēk(t) = 1

nk(t)

t−1∑
τ=1

1[k∈A1(τ)]Wk(τ).� (15)

Fix δt ∈ (0, 1) for each t ∈ {n + 1, n + 2, . . . } such that δt ≥ δt+1 for all
t ∈ {n + 1, n + 2, . . . }. For each t ∈ {n + 1, n + 2, . . . } and k ∈ [1 : n], define

Fig. 1  Left: The mean rewards of the resources, Right: Probabilities of choosing the resources

Dynamic Games and Applications

	
Ẽk(t) = Ēk(t) +

√√√√2 log
(

nk(t)(nk(t)+1)
δt

)

nk(t)
.� (16)

Also, define the functions ft : Rn × Nn
0 → R for t ∈ {n + 1, n + 2, . . . } as

	
ft(p, x) =

n∑
k=1

Ẽk(t)pk

1 + xk
.� (17)

Before moving on to the main result, we introduce the following well-known lemma.

Lemma 2  Given a sequence {Xt}∞
t=1 of independent zero-mean 1-sub Gaussian random

variables, a positive integer-valued random variable G (possibly dependent on the sequence
{Xt}∞

t=1) and ϵ ∈ (0 , 1), we have

	

P





1
G

G∑
i=1

Xi ≤ −

√√√√2 log
(

G(G+1)
ϵ

)

G





≤ ϵ,P





1
G

G∑
i=1

Xi ≥

√√√√2 log
(

G(G+1)
ϵ

)

G





≤ ϵ.

Proof  This result is given as an exercise in the work of [5]. See [52] for a proof. □

Fix t ∈ {n + 1, n + 2, . . . } and k ∈ [1 : n]. For each s ∈ [1 : nk(t)], define W̃k(s) as the
reward obtained when the resource k is chosen for the s-th time by player 1. Hence, notice
that Ēk(t) = 1

nk(t)
∑nk(t)

s=1 W̃k(s). Notice that from assumption A2, {W̃k(s) − Ek}nk(t)
s=1

is a collection of independent 1-sub Gaussian random variables. Applying Lemma 2 to
{W̃k(t) − Ek}nk(t)

t=1 with G = nk(t) and ϵ = δt, we have

	

P




1
nk(t)

nk(t)∑
s=1

(W̃k(s) − Ek) ≤ −

√√√√2 log
(

nk(t)(nk(t)+1)
δt

)

nk(t)




≤ δt,� (18)

and

	

P




1
nk(t)

nk(t)∑
s=1

(W̃k(s) − Ek) ≥

√√√√2 log
(

nk(t)(nk(t)+1)
δt

)

nk(t)




≤ δt.� (19)

The above two inequalities translate to

	 P
{

Ek ≥ Ẽk(t)
}

≤ δt,� (20)

Dynamic Games and Applications

and

	

P




Ek ≤ Ẽk(t) − 2

√√√√2 log
(

nk(t)(nk(t)+1)
δt

)

nk(t)




≤ δt,� (21)

for all t ∈ {n + 1, n + 2, . . . } and k ∈ [1 : n], where Ẽk(t) is defined in (16).
Now consider the collection {Gn+1, Gn+2, . . . } of events that shall be called “good"

events: For t ∈ {n + 1, n + 2, . . . } the “good" event Gt is defined by the inequalities

	 Ek < Ẽk(t),� (22)

and

	
Ek > Ẽk(t) − 2

√√√√2 log
(

nk(t)(nk(t)+1)
δt

)

nk(t)
� (23)

for k ∈ [1 : n]. Specifically, Gt is defined as the event that (22) and (23) hold for all
k ∈ [1 : n]. Combining (20) and (21) with the union bound, we have that

	 P{Gc
t} ≤ 2nδt.� (24)

Recall that

	
p∗ ∈ arg max

p∈∆n,r

fworst(p),� (25)

where the function fworst is defined in (6). Let

	
x∗ ∈ arg min

x∈J
f(p∗, x),� (26)

where the function f is defined in (4). Hence, we have that

	 fworst,∗ = f(p∗, x∗),� (27)

where fworst,∗ is defined in (9). Before moving on to the Algorithm and the main theorem,
we first prove the following lemma.

Lemma 3  Fix t ∈ {n + 1 , n + 2 , . . . }. Assume that the “good" event Gt is true. Then we
have that

(a)	 ft(p∗, x) ≥ f(p∗, x∗) for every x ∈ J , where ft is defined in (17), p∗ is defined in
(25) and x∗ is defined in (26).

(b)	 Define

Dynamic Games and Applications

	
Dt = C + 2

√
2 log

(
t(t + 1)

δt

)
,� (28)

	 where

	
C = max

k∈[1:n]
Ek.� (29)

	 We have that ∥∇pft(p, x)∥2 ≤ nD2
t for every p ∈ ∆n,r and x ∈ J .

Proof  We prove the two parts separately.

(a)	 We have that

	
ft(p∗, x) =

n∑
k=1

Ẽk(t)p∗
k

1 + xk
≥(a)

n∑
k=1

Ekp∗
k

1 + xk
= f(p∗, x) ≥ f(p∗, x∗),� (30)

	 where (a) follows since we are in the “good" event Gt (so (22) holds) and the last
inequality follows from the definition of x∗ in (26).

(b)	 First, notice that when we are in the event Gt, we have from (23) that,

	
Ẽk(t) < Ek + 2

√√√√2 log
(

nk(t)(nk(t)+1)
δt

)

nk(t)
≤(a) C + 2

√
2 log

(
t(t + 1)

δt

)
= Dt,

� (31)

	 for all k ∈ [1 : n], where (a) follows since Ek ≤ C by definition of C in (29), and
1 ≤ nk(t) ≤ t for t ∈ {n + 1, n + 2, . . . } by definition of nk(t). Hence,

	
∥∇pft(p, x)∥2 =

n∑
k=1

Ẽ2
k(t)

(1 + xk)2 ≤
n∑

k=1

Ẽ2
k(t) ≤ nD2

t .� (32)
□

We summarize our approach in Algorithm 1. The algorithm relies on three key steps.
First, we assume that given p ∈ ∆n,r, we can sample a set A ⊂ [1 : n] such that |A| = r,

and E{1k∈A} = pk for all k ∈ [1 : n]. This can be solved using the Madow’s sampling tech-
nique ([1]). In Appendix A, we provide the algorithm for completeness. The correctness of
the algorithm is established in [1].

Second, we assume we have an oracle that can compute a solu-
tion y ∈ arg minx∈J

∑n
k=1

Fkpk

1+xk
, where Fi ≥ 0 for all i ∈ [1 : n], and

p = [p1, p2, . . . , pn] ∈ ∆n,r. This problem is nonconvex due to the fact that J is a discrete
set. Nevertheless, the problems of above type can be solved explicitly (we describe a simple
method in Appendix C).

Finally, we assume that given x ∈ Rn
+, we can find the projection Π∆n,r

(x) of x onto
∆n,r. An algorithm for this task is given in Appendix D along with the analysis.

Dynamic Games and Applications

For our algorithm, we also require step size parameters βt for t ∈ {n + 1, n + 2, . . . }
satisfying βt ≥ βt+1 for all t ∈ {n + 1, n + 2, . . . }.

1 for each time slot t ∈ [1 : n] do
2 Set A1(t) ⊂ [1 : n] arbitrarily satisfying |A1(t)| = r and t ∈ A1(t).
3 Receive feedback {Wk(t); 1 ≤ k ≤ n, k ∈ A1(t)}.
4 end
5 Initialize p(n + 1) ∈ ∆n,r.
6 for each time slot t ∈ {n + 1, n + 2, . . . , } do
7 Sample an action set A1(t) ⊂ [1 : n] using the Madow’s sampling

technique such that |A1(t)| = r, and pk(t) = E{ [k∈A1(t)]|p(t)} for each
k ∈ [1 : n]. In particular, given p(t), we sample the above action set
independent of the past H(t) (see Appendix A for the implementation).

8 Receive feedback {Wk(t); 1 ≤ k ≤ n, k ∈ A1(t)}.
9 Find x(t) by solving,

x(t) ∈ arg min
x∈J

ft(p(t),x)

using Algorithm 3, where ft is defined in (17).
10 Obtain p(t + 1) by using,

p(t + 1) = Π∆n,r (p(t) + βt∇pft(p(t),x(t))) ,

where Π∆n,r (y) denotes the projection of y onto ∆n,r (See Appendix 4
for an algorithm) and βt is the step size parameter.

11 end

Algorithm 1  UCB based algorithm for worst-case maximization

2.3  Analysis of the Algorithm

In this section, we focus on establishing the performance of Algorithm 1.

Theorem 3  Fix T ∈ {n + 2 , n + 3 , . . . }.

(a)	 Running the UCB based worst-case maximization algorithm in Algorithm 1 for T
time slots with βt > 0 such that βt ≥ βt+1 and δt ∈ (0, 1) such that δt ≥ δt+1 for all
t ∈ {n + 1, n + 2, . . . } yields

	

fworst,∗ − Rworst(T) ≤ n

2βT T
+ nrC

T
+

nD2
T

∑T
t=n+1 βt

2T
+ 4

√√√√2nr log
(

T (T +1)
δT

)

T

+ 1
T

T∑
t=n+1

(
2rC + n

βt

)
nδt,

	 where Rworst(T) is the time-average worst case expected reward achieved by
the algorithm (See (7)), C is defined in (29), and DT is defined in (28). Notice that the
algorithm does not require the knowledge of T. Hence, the algorithm can be implemented

Dynamic Games and Applications

in a setting where the time horizon is unknown.
(b)	 Running Algorithm 1 for T time slots with δt = Θ(1/t) and βt = Θ(1/

√
t) for all

t ∈ {n + 1, n + 2, . . . }, we have that fworst,∗ − Rworst(T) ≤ Θ
(
log(T)/

√
T

)
.

Proof  We will first prove part-(a).

(a) Fix any t ∈ {n + 1, . . . , T} and assume the “good" event Gt holds. Lemma 3 implies
∥∇pft(p(t), x(t))∥2 ≤ nD2

t ≤ nD2
T , where the first inequality follows from Lemma 3-(b)

and the second inequality follows since Dt ≤ DT for all t ∈ {n + 1, . . . , T} (see the defini-
tion of Dt in (28) and use the fact that δt ≥ δT for all t ∈ {n + 1, . . . , T}). Also, we have

	 ft(p∗, x(t)) ≥ f(p∗, x∗) = fworst,∗,� (33)

where x(t) is defined in line 9 of Algorithm 1, ft is defined in (17), the first inequality fol-
lows from Lemma 3-(a) and the last equality follows from (27). Define

	
x̃(t) ∈ arg min

x∈J
f(p(t), x).

Thus

	 f(p(t), x̃(t)) = fworst(p(t))� (34)

by the definition of fworst in (6). Due to the definition of x(t) in line 9 of Algorithm 1, we
have

	 ft(p(t), x(t)) ≤ ft(p(t), x̃(t)).� (35)

Also, notice that

	

ft(p(t), x̃(t)) =(a)

n∑
k=1

Ẽk(t)pk(t)
1 + x̃k(t)

=
n∑

k=1

Ekpk(t)
1 + x̃k(t)

+
n∑

k=1

[Ẽk(t) − Ek]pk(t)
1 + x̃k(t)

=(b) fworst(p(t)) +
n∑

k=1

[Ẽk(t) − Ek]pk(t)
1 + x̃k(t)

≤(c) fworst(p(t)) +
n∑

k=1




2pk(t)
1 + x̃k(t)

√√√√2 log
(

nk(t)(nk(t)+1)
δt

)

nk(t)




≤(d) fworst(p(t)) + 2
n∑

k=1


pk(t)

√√√√2 log
(

T (T +1)
δT

)

nk(t)




� (36)

where (a) follows from the definition of ft in (17); (b) follows from (34); (c) follows since
we assume the “good" event Gt holds (hence, the inequality (23) is true); (d) follows since

Dynamic Games and Applications

nk(t) ≤ T , δt ≥ δT for all t ∈ {n + 1, . . . , T}, and x̃k(t) ≥ 0 for all k ∈ [1 : n]. Since
p(t + 1) is defined in line 10 of Algorithm 1 as the projection of p(t) + βt∇pft(p(t), x(t))
onto the convex set ∆n,r, we have that,

	

∥p(t + 1) − p∗∥2 ≤(a) ∥p(t) + βt∇pft(p(t), x(t)) − p∗∥2

≤ ∥p(t) − p∗∥2 + β2
t ∥∇pft(p(t), x(t))∥2 − 2βt(p∗ − p(t))⊤∇pft(p(t), x(t))

=(b) ∥p(t) − p∗∥2 + β2
t ∥∇pft(p(t), x(t))∥2 − 2βt(ft(p∗, x(t)) − ft(p(t), x(t)))

≤(c) ∥p(t) − p∗∥2 + nβ2
t D2

T − 2βtf
worst,∗ + 2βtft(p(t), x̃(t)))

≤(d) ∥p(t) − p∗∥2 + nβ2
t D2

T + 4βt

n∑
k=1





pk(t)

√√√√2 log
(

T (T +1)
δT

)

nk(t)





− 2βtf
worst,∗ + 2βtf

worst(p(t))

� (37)

where (a) follows since projection onto the convex set ∆n,r reduces the distance to any
point in the set, (b) follows from the subgradient equality for the linear function ft(·, x(t)),
(c) follows from (33) and (35), and (d) follows from (36).

Hence, we have that for all t ∈ {n + 1, . . . , T}, given that the “good" event Gt is true

	

2fworst,∗ − 2fworst(p(t)) − 1
βt

∥p(t) − p∗∥2 + 1
βt

∥p(t + 1) − p∗∥2

≤ nβtD
2
T + 4

n∑
k=1




pk(t)

√√√√2 log
(

T (T +1)
δT

)

nk(t)




� (38)

Notice that

	

pk(t) =(a) E{1[k∈A1(t)]|p(t)} =(b) E{1[k∈A1(t)]|p(t), H(t)}
=(c) E{1[k∈A1(t)]|H(t)},

� (39)

where (a) follows due to the sampling of the set A1(t) in line 7 of Algorithm 1, (b) follows
because the action set A1(t) is sampled independent of the history H(t) given p(t) (see line
7 of Algorithm 1), and (c) follows since p(t) is H(t)-measurable.

Now we take the expectation (Conditioned on the event Gt) of both sides of (38) which
gives,

Dynamic Games and Applications

	

E

{
2fworst,∗ − 2fworst(p(t)) − 1

βt
∥p(t) − p∗∥2 + 1

βt
∥p(t + 1) − p∗∥2

∣∣∣∣∣Gt

}

≤ nβtD
2
T + 4E





n∑
k=1

pk(t)

√√√√2 log
(

T (T +1)
δT

)

nk(t)

∣∣∣∣∣Gt





≤ nβtD
2
T + 4

P{Gt}
E




n∑
k=1

pk(t)

√√√√2 log
(

T (T +1)
δT

)

nk(t)




=(a) nβtD
2
T + 4

P{Gt}
E




n∑
k=1

E{1[k∈A1(t)]|H(t)}

√√√√2 log
(

T (T +1)
δT

)

nk(t)




=(b) nβtD
2
T + 4

P{Gt}
E



E




n∑
k=1

1[k∈A1(t)]

√√√√2 log
(

T (T +1)
δT

)

nk(t)

∣∣∣∣∣H(t)







= nβtD
2
T + 4

P{Gt}
E



E




∑
j:j∈A1(t)

√√√√2 log
(

T (T +1)
δT

)

nj(t)

∣∣∣∣∣H(t)







= nβtD
2
T + 4

P{Gt}
E




∑
j:j∈A1(t)

√√√√2 log
(

T (T +1)
δT

)

nj(t)




� (40)

where (a) follows from (39) and (b) follows since nk(t) is H(t)-measurable. Hence, we
have that for t ∈ {n + 1, . . . , T}

	

E
{

2fworst,∗ − 2fworst(p(t))|Gt

}
≤ E{∥p(t) − p∗∥2|Gt}

βt
− E{∥p(t + 1) − p∗∥2|Gt}

βt

+ nβtD
2
T + 4

P{Gt}
E




∑
j:j∈A1(t)

√√√√2 log
(

T (T +1)
δT

)

nj(t)




.

� (41)

Now, notice that

	

E{∥p(t + 1) − p∗∥2|Gt}P{Gt} = E{∥p(t + 1) − p∗∥2}
− E{∥p(t + 1) − p∗∥2|Gc

t}P{Gc
t} ≥ E{∥p(t + 1) − p∗∥2} − nP{Gc

t},
� (42)

where the last inequality follows from ∥p(t + 1) − p∗∥2 ≤ n (since p(t + 1), p∗ ∈ ∆n,r).
Next, notice that

Dynamic Games and Applications

	
fworst,∗ =

n∑
k=1

p∗
kEk

1 + x∗
k

≤
n∑

k=1

p∗
kC = rC,� (43)

where the first equality follows from (27), the inequality follows from the definition of
C in (29) and the fact that x∗

k ≥ 0 for all k ∈ [1 : n], and the last equality follows since
p∗ ∈ ∆n,r (see (25)). Hence,

	 E
{

2fworst,∗ − 2fworst(p(t))|Gc
t

}
≤ 2fworst,∗ ≤ 2rC,� (44)

where the last inequality follows from (43). Notice that,

	

E{2fworst,∗ − 2fworst(p(t))}
= E{2fworst,∗ − 2fworst(p(t))|Gt}P{Gt} + E{2fworst,∗ − 2fworst(p(t))|Gc

t}P{Gc
t}

≤(a)
1
βt

E{∥p(t) − p∗∥2|Gt}P{Gt} − 1
βt

E{∥p(t + 1) − p∗∥2|Gt}P{Gt} + nβtD
2
TP{Gt}

+ 4E





∑
j:j∈A1(t)

√√√√2 log
(

T (T +1)
δT

)

nj(t)





+ 2rCP{Gc
t}

≤(b)
1
βt

E{∥p(t) − p∗∥2} − 1
βt

E{∥p(t + 1) − p∗∥2} + n

βt
P{Gc

t} + nβtD
2
T

+ 4E




∑
j:j∈A1(t)

√√√√2 log
(

T (T +1)
δT

)

nj(t)




+ 2rCP{Gc
t}

≤(c)
1
βt

E{∥p(t) − p∗∥2} − 1
βt

E{∥p(t + 1) − p∗∥2} + nβtD
2
T

+ 4E




∑
j:j∈A1(t)

√√√√2 log
(

T (T +1)
δT

)

nj(t)




+ 2
(

2rC + n

βt

)
nδt,

� (45)

where (a) follows from (41) and (44), (b) follows since E{X|Y }P{Y } ≤ E{X} for a posi-
tive valued random variable X and (42), and (c) follows from (24). Now, we sum (45) for
t ∈ {n + 1, . . . , T} to get

Dynamic Games and Applications

	

E

{
2(T − n)fworst,∗ − 2

T∑
t=n+1

fworst(p(t))

}

≤ E{∥p(n + 1) − p∗∥2}
βn+1

+
T∑

t=n+2

[
1
βt

− 1
βt−1

]
E{∥p(t) − p∗∥2} − E{∥p(T + 1) − p∗∥2}

βT +1

+ nD2
T

T∑
t=n+1

βt + 4
T∑

t=n+1

E





∑
j:j∈A1(t)

√√√√2 log
(

T (T +1)
δT

)

nj(t)





+
T∑

t=n+1

2
(

2rC + n

βt

)
nδt

≤(a)
n

βn+1
+

T∑
t=n+2

n

[
1
βt

− 1
βt−1

]
+ nD2

T

T∑
t=n+1

βt

+ 4
T∑

t=n+1

E




∑
j:j∈A1(t)

√√√√2 log
(

T (T +1)
δT

)

nj(t)




+
T∑

t=n+1

2
(

2rC + n

βt

)
nδt

= n

βT
+ nD2

T

T∑
t=n+1

βt + 4
T∑

t=n+1

E




∑
j:j∈A1(t)

√√√√2 log
(

T (T +1)
δT

)

nj(t)




+
T∑

t=n+1

2
(

2rC + n

βt

)
nδt

� (46)

where (a) follows since 1/βt − 1/βt−1 ≥ 0 for all t ∈ {n + 2, . . . , T} and ∥p(t) − p∗∥2 ≤ n
for all t ∈ {n + 1, . . . , T} (since p(t), p∗ ∈ ∆n,r). Now, notice that

	

T∑
t=n+1

E




∑
j:j∈A1(t)

√√√√2 log
(

T (T +1)
δT

)

nj(t)




= E




n∑
k=1

T∑

t = n + 1
k : k ∈ A1(t)

√√√√2 log
(

T (T +1)
δT

)

nk(t)




= E





n∑
k=1

nk(T)∑
j=nk(n+1)

√√√√2 log
(

T (T +1)
δT

)

j





≤ E





n∑
k=1

nk(T)∑
j=1

√√√√2 log
(

T (T +1)
δT

)

j





≤(a) 2E

{
n∑

k=1

√
2nk(T) log

(
T (T + 1)

δT

)}
≤(b) 2

√
2n log

(
T (T + 1)

δT

)√√√√
n∑

k=1

nk(T)

≤(c) 2

√
2nrT log

(
T (T + 1)

δT

)
,

where (a) follows from
∑l

j=1
√

j
−1 ≤ 2

√
l, (b) follows since

∑n
k=1

√
nk(T) ≤

√
n

∑n
k=1 nk(T), and (c) follows since

∑n
k=1 nk(T) = r(T − 1) ≤ rT .

Substituting above in (46), we have that

Dynamic Games and Applications

	

E

{
2(T − n)fworst,∗ − 2

T∑
t=n+1

fworst(p(t))

}

≤ n

βT
+ nD2

T

T∑
t=n+1

βt + 8

√
2nrT log

(
T (T + 1)

δT

)
+

T∑
t=n+1

2
(

2rC + n

βt

)
nδt

� (47)

For t ∈ [1 : n], define p(t) as pk(t) = 1[k∈A1(t)]. This definition is consistent with the defi-
nition of p(t) for t ∈ {n + 1, . . . }, since A1(t) is deterministic for t ∈ [1 : n] (see lines 1-4
of Algorithm 1). Hence,

	
E

{
2nfworst,∗ − 2

n∑
t=1

fworst(p(t))

}
≤ 2nfworst,∗ ≤ 2nrC, � (48)

where the last inequality follows from (43). Adding (47) and (48), and dividing by 2T, we
have that

	

E

{
fworst,∗ − 1

T

T∑
t=1

fworst(p(t))

}
≤ n

2βT T
+ nrC

T
+

nD2
T

∑T
t=n+1 βt

2T

+ 4

√√√√2nr log
(

T (T +1)
δT

)

T
+ 1

T

T∑
t=n+1

(
2rC + n

βt

)
nδt.

� (49)

Using the definition of Rworst(T) defined in (7) in the above, we are done.
(b) To prove the (b), consider δt = Θ(1/t) and βt = Θ(1/

√
t) for all

t ∈ {n + 1, n + 2, . . . }. We analyze each term in the right hand side of the bound obtained

in part-(a). Notice that n
2βT T is Θ(1/

√
T), nrC

T is Θ(1/T), and

√
2nr log

(
T (T +1)

δT

)
T is

Θ(
√

log(T)/T). We will analyze the remaining two terms separately. For simplicity, we
will use δt = 1/t and βt = 1/

√
t. First,

	

nD2
T

∑T
t=n+1 βt

2T
=(a)

n

2T

(
C + 2

√
2 log (T 2(T + 1))

)2 T∑
t=n+1

1√
t

=(b) Θ
(

log(T)√
T

)
,

where (a) follows from the definition of DT in (28) and for (b) we have used ∑l
k=1 1/

√
k ≤ 2

√
l. Next,

	

1
T

T∑
t=n+1

(
2rC + n

βt

)
nδt = 1

T

T∑
t=n+1

(
2rnC

t
+ n2

√
t

)
=(a) Θ

(
1√
T

)
,

where for (a) we have used
∑l

k=1 1/k ≤
∑l

k=1 1/
√

k ≤ 2
√

l. Combining the terms, we
are done. □

Dynamic Games and Applications

3  Simulation Results

In this section we present our simulation results. In Fig. 2, we simulate the performance
of our algorithm for n = 6, m = 5, E = [3, 1, 1, 1, 0.5, 0.1], and r ∈ {1, 2, 3}. For each
value of r, we run Algorithm 1 for 2 × 106 iterations. We first plot 1

t

∑t
τ=1 fworst(p(τ))

vs t, after which we plot the entries of p(t) vs t, where t is the iteration number. In the
plots, we also plot the optimal objective value fworst,∗, and the optimal p∗ for reference. In
Fig. 3, we repeat the above with parameters n = 6, m = 5, E = [6.1, 1, 1, 1, 0.5, 0.1] and
r ∈ {1, 2, 3}.

Notice that in both cases, we use E sorted in nonincreasing order. Comparing the case
r = 1 for the two values of E it can be seen that when E = [6.1, 1, 1, 1, 0.5, 0.1], player 1
chooses resource 1 with probability 1 while when E = [3, 1, 1, 1, 0.5, 0.1], player 1 chooses
several resources with nonzero probability. This is because when E = [6.1, 1, 1, 1, 0.5, 0.1],
the mean reward of the first resource is higher than five times the mean reward of the second
resource. Hence, even if all the other players choose resource 1, player 1 will not benefit by
choosing a different resource. From Fig. 2-Bottom-Left and Fig. 3-Bottom-Left, it can be
seen that the online algorithm learns this behavior. However, when r > 1, player 1 chooses
resource 1 with probability 1 for both values of E. In all cases, it can be seen that the worst-
case expected utility of the online algorithm converges to the optimal value.

Another interesting observation is the slower convergence of the algorithm for r = 1 with
E = [6.1, 1, 1, 1, 0.5, 0.1]. This may be due to the fact that this is the only case where the
optimal solution p∗ is an extreme point of ∆n,r (p∗ chooses all resources except resource 1
with zero probability). In particular, using p(t) close to p∗ in the initial phases of the algo-
rithm reduces exploration required to learn the Ek values.

4  Conclusions

In this paper, we considered the problem of worst-case time-average expected reward maxi-
mization for the first player in online multi-player resource-sharing games with bandit feed-
back. We considered a fair reward allocation model, where in each time slot, the reward of a
resource is shared equally among the players selecting it. We provided an upper confidence
bound algorithm that gets within O(log (T)/

√
T) of optimality within a finite time horizon

of T time slots. Extending this work beyond the fair reward allocation model to general
congestion games in the online setting is future work.

Appendix A: Madow’s Sampling Technique

In this section, we present the Madow’s sampling technique (Algorithm 2). The algorithm
takes as an input a vector p ∈ ∆n,r and outputs a set A ⊂ [1 : n] such that |A| = r, and
E{1k∈A} = pk for all k ∈ [1 : n]. See [1] for the proof of the correctness of the algorithm.

Dynamic Games and Applications

Fi
g.

 2
 S

ce
na

rio
 E

=
[3

,1
,1

,1
,0

.5
,0

.1
] .

To
p:

 1 t

∑
t τ

=
1

f
w

or
st

(p
(τ

))
 a

nd
 f

w
or

st
,∗

 v
s t

, B
ot

to
m

: C
om

po
ne

nt
s o

f p
(t

) a
nd

 c
om

po
ne

nt
s o

f p
∗

 v
s t

 fo
r,

Le
ft:

 r
=

1,
 M

id
dl

e:

r
=

2,
 R

ig
ht

: r
=

3

Dynamic Games and Applications

1 Define Π0 = 0, and Πk = Πk−1 + pk ∀k ∈ [1 : n].
2 Sample U ∼ Uniform(0, 1).
3 Define the set S0 = ∅, where ∅ denotes the empty set.
4 for each k ∈ {0, 1, . . . , r − 1} do
5 Find the unique i ∈ [1 : n] such that Πi−1 ≤ U + k < Πi.
6 Define Sk+1 = Sk ∪ {i}.
7 end
8 Output A = Sr.

Algorithm 2  Madow’s sampling technique

Appendix B: Proof of Theorem 2

This section finds p∗ for the case m = 3, r = 1 where n is a positive inte-
ger and E = [E1, . . . , En] is known. Recall that we use ∆n = ∆n,1. Define
p∗ ∈ arg minp∈∆n

fworst(p), fworst(p) = minx∈J f(p, x), and f(p, x) =
∑n

k=1
pkEk

1+xk
.

Recall that we assumed without loss of generality that E is sorted as Ek ≥ Ek+1 for all
k ∈ {1, 2, . . . , n − 1}. Notice that from Lemma 1 we have,

	
fworst(p) =

{ ∑n
k=1 pkEk − 2

3 Γ1(p) if Γ1(p) > 3Γ2(p)∑n
k=1 pkEk − 1

2 Γ1(p) − 1
2 Γ2(p) if Γ1(p) ≤ 3Γ2(p) � (A1)

where Γ1(p), Γ2(p) are the largest and the second largest elements of the set {pkEk; 1 ≤ k ≤ n},
respectively. Observe that if Γ1(p) = 3Γ2(p), then 2

3 Γ1(p) = 1
2 Γ1(p) + 1

2 Γ1(p). In par-
ticular, the function fworst(p) is continuous and so it has a maximizer p∗ over the compact
set ∆n. By considering the case Γ1(p∗) ≥ 3Γ2(p∗) and a particular index i ∈ {1, . . . , n}
achieves p∗

i Ei = Γ1(p∗), and the case Γ1(p∗) ≤ 3Γ2(p∗) and particular indices i ̸= j
achieve p∗

i Ei = Γ1(p∗), p∗
j Ej = Γ2(p∗), we notice that p∗ is the solution of the problem

with the maximal optimal objective out of the n2 linear programs,

	

(P1-i) : max
n∑

k=1
pkEk − 2piEi

3

s.t. p ∈ ∆n,
piEi ≥ 3pkEk ∀1 ≤ k ≤ n,

� (A2)

and

	

(P1-(i, j)) : max
n∑

k=1
pkEk − piEi

2 − pjEj

2

s.t. p ∈ ∆n, piEi ≤ 3pjEj , piEi ≥ pjEj ,
pjEj ≥ pkEk ∀1 ≤ k ≤ n, k ̸= i,

� (A3)

where i, j ∈ [1 : n] and i ̸= j. To solve (P1-i), and (P1-(i, j)), it shall be useful to re-index
to associate i with 1, and (i, j) with 1 and 2. Hence, we define the two problems.

Dynamic Games and Applications

	

(P1-1) : max f1(p) =
n∑

k=1
pkFk − 2p1F1

3

s.t. p ∈ ∆n,
p1F1 ≥ 3pk+1Fk+1 ∀k ∈ {1, . . . , n − 1},

� (A4)

and

	

(P1-2) : max f2(p) =
n∑

k=1
pkFk − p1F1

2 − p2F2
2

s.t. p ∈ ∆n, p1F1 ≤ 3p2F2, p1F1 ≥ p2F2,
p2F2 ≥ pkFk ∀3 ≤ k ≤ n,

� (A5)

where for (P1-1), without loss of generality F ∈ Rn is assumed to a positive vector such that
Fk ≥ Fk+1 for k ∈ [2 : n − 1], and for (P1-2), F ∈ Rn is assumed to a positive vector such
that Fk ≥ Fk+1 for k ∈ [3 : n − 1]. It should be noted that the Fk values are just the Ek val-
ues under more convenient indexing. Solving the above two problems immediately solves
each of the previously defined n2 problems. Define the two sequences (Ui; 1 ≤ i ≤ n), and
(Vi; 2 ≤ i ≤ n) by,

	
Ui = i

3
F1

+
∑i

k=2
1

Fk

,� (A6)

and,

	
Vi = i − 1∑i

k=1
1

Fk

.� (A7)

These two sequences are useful when constructing the solutions to (P1-1) and (P1-2).
We first state a lemma that is useful for the proof.

Lemma 4  Consider constrained optimization problem

	

max
x ∈ Y z0(x)

s.t. zi(x) ≥ 0 for i ∈ {1, 2, . . . , k},
� (A8)

where zi : Rn → R for i ∈ {0, 1, 2, . . . , k}, and Y ⊂ Rn. Consider the unconstrained prob-
lem maxx∈Y z0(x) +

∑k
i=1 µizi(x) for some µ ≥ 0. Let x∗ be a solution to the uncon-

strained problem. Assume x∗ satisfies for all i ∈ {1, 2, . . . , k},

(a)	 zi(x∗) ≥ 0 (That is x∗ is feasible for the constrained problem)
(b)	 µi > 0 implies zi(x∗) = 0.

Then x∗ is optimal for the constrained problem.

Proof  The proof of the lemma is immediate and omitted for brevity.

Dynamic Games and Applications

Fi
g.

 3
 S

ce
na

rio
 E

=
[6

.1
,1

,1
,1

,0
.5

,0
.1

] .
To

p:
 1 t

∑
t τ

=
1

f
w

or
st

(p
(τ

))
 a

nd
 f

w
or

st
,∗

 v
s t

, B
ot

to
m

: C
om

po
ne

nt
s o

f p
(t

) a
nd

 c
om

po
ne

nt
s o

f p
∗

 v
s t

, L
ef

t:
r

=
1,

 M
id

dl
e:

r

=
2,

 R
ig

ht
: r

=
3

Dynamic Games and Applications

B.0.1 Solving (P1-1)

Consider the problem (P1-1):

	

(P1-1) : max f1(p)
s.t. p∈ ∆n,

p1F1≥ 3pk+1Fk+1 ∀k ∈ {1, 2, . . . , n − 1},
� (A9)

where the function f1 is defined by

	
f1(p) =

n∑
k=1

pkFk − 2p1F1

3
.� (A10)

Let us define

	
u = arg max

1≤i≤n
Ui,� (A11)

where the sequence (Ui; 1 ≤ i ≤ n) is defined in (A6) and arg max returns the least index
in the case of ties. We establish that the solution to (P1-1) is p̃∗, where

	

p̃∗
k =




3
F1

3
F1

+
∑u

j=2
1

Fj

if k = 1
1

Fk
3

F1
+

∑u

j=2
1

Fj

if 2 ≤ k ≤ u

0 otherwise,

� (A12)

with optimal objective value Uu.
Consider the vector µ̃∗ ∈ Rn−1 defined by

	

µ̃∗
k =




1
3

(
1 − 1

Fk+1
u

3
F1

+
∑u

j=2
1

Fj

)
if 1 ≤ k ≤ u − 1

0 otherwise,
� (A13)

where u is defined in (A11). In the subsequent analysis, we establish that µ̃∗ defined
above is a valid Lagrange multiplier (µ̃∗

k ≥ 0 for all k ∈ [1 : n − 1]) and (p̃∗, µ̃∗) satisfy
the conditions of Lemma 4, where for k ∈ [1 : n − 1], µ̃∗

k corresponds to the constraint
p1F1 ≥ 3pk+1Fk+1 of (P1-1). This establishes that p̃∗ solves (P1-1). It can be easily
checked by substitution that the objective value of (P1-1) for p̃∗ is Uu. Hence, the steps of
the proof can be summarized as:

1.	 µ̃∗
k ≥ 0 for all k ∈ [1 : n − 1].

2.	 p̃∗ is feasible for (P1-1). In particular, we have that p̃∗ ∈ ∆n and p̃∗
1F1 ≥ 3p̃∗

k+1Fk+1
for k ∈ {1, . . . , n − 1}.

3.	 p̃∗ solves the unconstrained problem with Lagrange multiplier vector µ̃∗ (See Lemma 4
for the construction of the unconstrained problem).

Dynamic Games and Applications

4.	 For k ∈ {1, . . . , n − 1}, µ̃∗
k > 0 implies the corresponding constraint of (P1-1) is met

with equality.

Notice that step 2 above can be checked by direct substitution from (A12). Also, for step
4, notice that from the definition of µ̃∗ in (A13), µ̃∗

k > 0 implies that k ∈ {1, . . . , u − 1}.
By substitution from the definition of p̃∗ in (A12), it follows that p̃∗

1F1 = 3p̃∗
k+1Fk+1 for

k ∈ {1, . . . , u − 1}. Hence, we are only required to establish steps 1 and 3. We establish
step 1 along with two other results that will be useful for step 3 in Lemma 5 below, after
which we establish step 3 in Lemma 6.

Lemma 5  Consider the µ̃∗ defined in (A13). We have that

(a)	 µ̃∗
k ≥ 0 for all k such that 1 ≤ k ≤ n − 1.

(b)	 Fk(1 − 3µ̃∗
k−1) = u

3
F1

+
∑u

i=2
1

Fi

for 2 ≤ k ≤ u and

F1

(
1
3 +

∑u−1
i=1 µ̃∗

i

)
= u

3
F1

+
∑u

i=2
1

Fi

.

(c)	 Fk ≤ u
3

F1
+

∑u

j=2
1

Fj

 for u + 1 ≤ k ≤ n.

Proof  Notice that since u = arg max1≤i≤n Ui, we have that

	 Uu ≥ Uj for all j ∈ [1 : n].� (A14)

(a)	 Notice that when k > u − 1, by definition of µ̃∗ in (A13), we have that µ̃∗
k = 0. Now

suppose k ≤ u − 1. Hence, we can assume u ≥ 2. From the definition of µ̃∗ in (A13),
we are required to prove Fk+1 ≥ u

3
F1

+
∑u

j=2
1

Fj

 for all k ∈ {1, 2, . . . , u − 1}. It is

enough to prove the above for k = u − 1, since Fk ≥ Fk+1 for k ≥ 2. Notice that
from (A14) we have that Uu ≥ Uu−1 (recall that u ≥ 2). Substituting from (A6),
Uu ≥ Uu−1 translates to u

3
F1

+
∑u

j=2
1

Fj

≥ u−1
3

F1
+

∑u−1

j=2
1

Fj

. Simplifying the above gives

Fu ≥ u
3

F1
+

∑u

j=2
1

Fj

 as desired.

(b)	 Substituting from the definition of µ̃∗
k in (A13) and simplifying yields the result.

(c)	 If u = n, there is nothing to prove. Hence, we can assume u < n. Notice that it is enough
to prove the result for k = u + 1, since Fk ≥ Fk+1 for k ≥ 2. From (A14), we have
that Uu ≥ Uu+1 (recall that u < n). Substituting from (A6), Uu ≥ Uu+1 translates to

u
3

F1
+

∑u

j=2
1

Fj

≥ u+1
3

F1
+

∑u+1

j=2
1

Fj

. Simplifying the above we have Fu+1 ≤ u
3

F1
+

∑u

j=2
1

Fj

as desired.□

Lemma 6  The vector p̃∗ defined in (A12) solves unconstrained problem with Lagrange
multiplier vector µ̃∗ defined in (A13) (See Lemma 4 for the construction of the uncon-
strained problem). In particular, p̃∗ solves

Dynamic Games and Applications

	

max f1(p) +
n−1∑
k=1

µ̃∗
k(p1F1 − 3pk+1Fk+1)

s.t. p∈ ∆n,
� (A15)

where the function f1 is defined in (A10).

Proof  Noticing from the definition of µ̃∗ in (A13) that µ̃∗
k = 0 for k > u, and using the

definition of function f1 in (A10), the objective of the above unconstrained problem simpli-
fies as

	

f1(p) +
n−1∑
k=1

µ̃∗
k(p1F1 − 3pk+1Fk+1) = p1F1

(
1
3

+
u−1∑
i=1

µ̃∗
i

)
+

u∑
k=2

pkFk(1 − 3µ̃∗
k−1)

+
n∑

k=u+1

pkFk =
u∑

i=1

piC +
n∑

k=u+1

pkFk,

where C = u
3

F1
+

∑u

i=2
1

Fi

 and the last equality follows from Lemma 5-(b). Also, notice that

from Lemma 5-(c), we have that C ≥ Fk for all k ∈ {u + 1, . . . , n}. Hence, the optimal
solution to the above defined unconstrained problem is any p ∈ ∆n such that pk = 0 for
all k ∈ {u + 1, . . . , n}. In particular, p̃∗ given in (A12) is a solution to the unconstrained
problem. □

B.0.2 Solving (P1-2)

Consider the problem (P1-2).

	

(P1-2) : max f2(p)
s.t. p ∈ ∆n, p1F1 ≤ 3p2F2, p1F1 ≥ p2F2

p2F2≥ pkFk ∀3 ≤ k ≤ n,
� (A16)

where the function f2 is defined as

	
f2(p) =

n∑
k=1

pkFk − p1F1

2
− p2F2

2 � (A17)

Let us define u = arg max2≤i≤n Ui and v = arg max2≤i≤n Vi where the sequences
(Ui; 1 ≤ i ≤ n), and (Vi; 2 ≤ i ≤ n) are defined in (A6), and (A7), respectively, and
arg max returns the least index in the case of ties. In this case, to define u, we only consider
the indices of the (Ui; 1 ≤ i ≤ n) sequence starting from 2 in contrast to the definition of u
in the solution to (P1-1). The solution of (P1-2) can be described under two cases.
Case 1: Vv > Uu: The solution to (P1-2) in this case is p̂∗ where

Dynamic Games and Applications

	
p̂∗

k =

{ 1
Fk∑v

j=1
1

Fj

if 1 ≤ k ≤ v

0 otherwise,
� (A18)

with optimal objective value Vv .
Case 2: Vv ≤ Uu: The solution to (P1-2) in this case is p̄∗ where

	

p̄∗
k =




3
F1

3
F1

+
∑u

j=2
1

Fj

if k = 1
1

Fk
3

F1
+

∑u

j=2
1

Fj

if 2 ≤ k ≤ u

0 otherwise.

� (A19)

with optimal objective value Uu.
The proof is similar to the Solution of (P1-1). We omit the proof for brevity. For the

complete proof, refer the technical report [52].

B.0.3 Finding p∗

Finally, we are ready to combine the solutions of (P1-1) and (P1-2) to find
p∗ ∈ arg maxp∈∆n

fworst(p). Notice that since we solved (P1-1) and (P1-2), we have
solved all of the n2 problems (P1-i), and (P1-(i, j)) for i, j ∈ [1 : n] such that i ̸= j
defined in (A2) and (A3), respectively. Hence, we can find p∗ by solving all the above
problems and finding the one that gives the highest optimal objective. But, it turns out
that it is, in fact, enough to solve (P1-1), and (P1-(1, 2)). To prove this, consider arbi-
trary (i, j) such that 1 ≤ i, j ≤ n such that i ̸= j. Define, D ∈ Rn to be the vector
obtained by permuting the entries of E such that D1 = Ei, D2 = Ej , and Dk ≥ Dk+1 for
k ∈ [3 : n − 1]. Notice that due to the solution of (P1-2), the optimal value of (P1-(i, j)) is

given by γ∗ = max

{
a−1∑a

k=1
1

Dk

, b
3

D1
+

∑b

k=2
1

Dk

∣∣∣∣∣2 ≤ a, b ≤ n

}
. Notice that,

	
max

{
a − 1∑a
k=1

1
Ek

,
b

3
E1

+
∑b

k=2
1

Ek

∣∣∣∣∣a, b ∈ [2 : n]

}
≥ γ∗,� (A20)

where the inequality follows since
∑a

k=1
1

Ek
≤

∑a
k=1

1
Dk

, and
3

E1
+

∑b
k=2

1
Ek

≤ 3
D1

+
∑b

k=2
1

Dk
 for all a, b ∈ [2 : n]. This follows since Ek ≥ Ek+1

for all k ∈ [1 : n − 1]. But notice that the left-hand side of (A20) is the optimal value of
(P1-(1, 2)). Hence, the optimal value of (P1-(1, 2)) is at least as that of (P1-(i, j)). Hence, it
is enough to solve (P1-(1, 2)). With similar reasoning, we can establish that solving (P1-1)
suffices. Considering the solutions (P1-(1, 2)) and (P1-1), we have the result.

Dynamic Games and Applications

Appendix C

Given F ∈ Rn
+, and p ∈ ∆n,r, we focus on finding x∗ ∈ arg minx∈J

∑n
k=1

pkFk

1+xk
. This

is an optimization over a nonconvex discrete set x ∈ J . However, it has a classical sepa-
rable structure that is well studied in the literature and can be solved exactly using either a
greedy O(n + mr log(n)) incremental algorithm or an improved O(n log(mr)) algorithm.
For completeness, we summarize an O(nmr) algorithm in Algorithm 3. For improved algo-
rithms, refer to the work of [53].

1 Initialize x = [0, 0, . . . , 0] ∈ Nn.
2 for each iteration k ∈ [1 : (m − 1)r] do

3 Increase xi by 1 where i ∈ arg min k∈[1:n]
xk<m−1

{
pkFk

1+xk
− pkFk

2+xk

}
.

4 end
5 Output x.

Algorithm 3  Algorithm for Appendix C

Appendix D: Algorithm to Project onto ∆n,r

1 Define for all 1 ≤ a ≤ b ≤ n,

µa,b =

∑b
j=a yj − (r − a + 1)

b − a + 1
,Aa,b = {yb ≥ µa,b ≥ ya − 1}

Ba,b = {(b = n) or [(b < n) and (yb+1 < µa,b)]}
Ca,b = {(a = 1) or [(a > 1) and (ya−1 − 1 > µa,b)]}
g(a, b) = min{c : c ≥ b, Ba,c = 1}, h(a, b) = max{c : c ≤ a, Cc,b = 1}.

2 Initialize (a1, b1) = (r, r).
3 for each t ∈ {1, 2, . . . } do
4 Set (at+1, bt+1) = (h(at, g(at, bt)), g(at, bt)).
5 if (at+1, bt+1) = (at, bt) then
6 Output x ∈ Rn, where xi = Π[0,1](yi − µat,bt).
7 end
8 end

Algorithm 4  Projecting y sorted in the nonincreasing order onto ∆n,r

Analysis of Algorithm 4: Fix y ∈ R. Notice that the problem of projection of y ∈ Rn
onto ∆n,r is,

	

min
z

1
2 ∥z − y∥2

s.t y ∈ ∆n,r
� (A21)

We assume, without loss of generality, that y is sorted in non-increasing order (Notice that if
y is not sorted, we could sort y, perform the projection, and rearrange the elements accord-

Dynamic Games and Applications

ing to the original order. This works since the set ∆n,r is closed under the permutation of
entries of its element vectors).

Now consider L(z, µ) for µ ∈ R given by L(z, µ) = 1
2 ∥z − y∥2 + µ

(∑n
j=1 zj − r

)
,

and the problem,

	

(P6-µ) min
z

L(z, µ)
s.t z ∈ [0, 1]n � (A22)

for a fixed µ ∈ R. Let us assume the existence of a µ∗ ∈ R such that the solution z∗ of
(P6-µ∗) defined in (A22) satisfies,

∑n
j=1 z∗

j = r. Notice that z∗ is optimal for the original
problem since for any z ∈ ∆n,r,

	
1
2

∥z − y∥2 = L(z, µ∗) ≥ L(z∗, µ∗) = 1
2

∥z∗ − y∥2.

Hence, we focus on finding such a µ∗ and the corresponding z∗. First, we focus on solving
(P6-µ) defined in (A22) for a fixed µ ∈ R. Notice that (P6-µ) is a separable quadratic pro-
gram in the entries of z. Hence, the optimal zj can be obtained by projecting the unconstrained
optimal value for each entry of z onto [0, 1]. Hence, the solution is zj = Π[0,1](yj − µ) for
all j ∈ [1 : n], where Π[0,1] denotes the projection operator onto [0, 1].

Now we need to find µ∗ such that the optimal solution z∗ of (P6-µ∗) defined in (A22)
satisfies z∗ ∈ ∆n,r. Hence, we require µ∗ ∈ R such that

	

n∑
j=1

Π[0,1](yj − µ∗) = r.� (A23)

For µ ∈ R, define the set Kµ = {i; 1 ≤ i ≤ n, µ + 1 ≥ yi ≥ µ}. Notice that for each µ ∈ R,
Kµ is either the empty set or a set of the form [a : b] where 1 ≤ a ≤ b ≤ n.

We have two possibilities if Kµ∗ is the empty set. The first is µ∗ > yj for all j ∈ [1 : n]
in which case we have

∑n
j=1 Π[0,1](yj − µ∗) = 0 which does not agree with (A23). The

second is µ∗ < yj − 1 for all j ∈ [1 : n] in which case we have
∑n

j=1 Π[0,1](yj − µ∗) = n.
This is only possible when n = r, in which case the only solution to the problem is the
trivial solution of player 1 choosing all the resources.

Hence, we will focus on the case of non-empty Kµ∗ . Let Kµ∗ = [a∗ : b∗] where
1 ≤ a∗ ≤ b∗ ≤ n. This is equivalent to µ∗ satisfying the conditions,

	

yb∗ ≥ µ∗ ≥ ya∗ − 1
(b∗ = n) or [(b∗ < n) and (yb∗+1 < µ∗)]
(a∗ = 1) or [(a∗ > 1) and (ya∗−1 − 1 > µ∗)]

� (A24)

Define for each a, b ∈ [1 : n] the real number µa,b as

	
µa,b =

∑b
j=a yj − (r − a + 1)

b − a + 1
.� (A25)

Dynamic Games and Applications

Now, notice that (A23) translates to,

	 µ∗ = µa∗,b∗ ,� (A26)

where Kµ∗ = [a∗ : b∗]. Combining (A26) and (A24), we have that if we can find
a∗, b∗ (1 ≤ a∗ ≤ b∗ ≤ n) such that

	

yb∗ ≥ µa∗,b∗ ≥ ya∗ − 1
(b∗ = n) or [(b∗ < n) and (yb∗+1 < µa∗,b∗)]
(a∗ = 1) or [(a∗ > 1) and (ya∗−1 − 1 > µa∗,b∗)]

are all satisfied, then we are guaranteed that the solution z∗ of (P6-µa∗,b∗) defined in (A22)
satisfies z∗ ∈ ∆n,r. For each a, b ∈ [1 : n], we will denote the three conditions,

	

Aa,b = 1{yb ≥ µa,b ≥ ya − 1}
Ba,b = 1{(b = n) or [(b < n) and (yb+1 < µa,b)]}
Ca,b = 1{(a = 1) or [(a > 1) and (ya−1 − 1 > µa,b)]}

Hence, our goal is to find (a∗, b∗) such that Aa∗,b∗ = 1, Ba∗,b∗ = 1, and Ca∗,b∗ = 1.
An easy way to find a∗, b∗ is to go through all a, b ∈ [1 : n] and check whether the above

three conditions are satisfied. This approach has to go through n2 pairs (a, b). We will pro-
vide an alternative approach that is efficient and goes through at most n pairs (a, b). With
this approach, we can also establish the existence of a∗, b∗ ∈ [1 : n] satisfying Aa∗,b∗ = 1,
Ba∗,b∗ = 1, and Ca∗,b∗ = 1.

Given a, b ∈ [1 : n], define g(a, b) as the minimum integer in [b : n] such that
Ba,g(a,b) = 1 (Notice that Ba,n = 1, so such an integer always exists). Similarly, define
h(a, b) as the maximum integer in [1 : a] such that Ch(a,b),b = 1 (Notice that C1,b = 1, so
such an integer always exists).

We have the following claim.

Claim 1:  If Aa,b = 1 then we have that Aa,g(a,b) = 1 and Ah(a,b),b = 1

Proof  We only prove that Aa,g(a,b) = 1. The other part follows from a similar argument.
First, notice that if g(a, b) = b, we are done. Hence, we will assume g(a, b) > b. We prove
a stronger statement. We prove that Aa,c = 1 for all c ∈ [b : g(a, b)]. We use induction for
the proof. Notice that the base case c = b is true. Now assume that Aa,c = 1 for some
c ∈ [b : g(a, b) − 1]. We prove that Aa,c+1 = 1. Since c ∈ [b : g(a, b) − 1], from the defini-
tion of function g, we have that Ba,c = 0. Also since c ≤ g(a, b) − 1, we have that c < n.
Hence, using the definition of Ba,c, we have that yc+1 ≥ µa,c. Hence,

	
µa,c+1 =

µa,c(c − a + 1) + yc+1

c − a + 2
≤ yc+1(c − a + 1) + yc+1

c − a + 2
= yc+1,

where for the first equation we have used the definition of µa,c+1 from (A25). Also,

Dynamic Games and Applications

	
µa,c+1 = µa,c(c − a + 1) + yc+1

c − a + 2
= µa,c + yc+1 − µa,c

c − a + 2
≥(a) µa,c ≥(b) ya − 1,

where (a) follows since yc+1 ≥ µa,c and (b) follows since Aa,c is true by assumption. From
the above two inequalities, we have that Aa,c+1 = 1 as desired. □

Now consider the following sequence S of tuples S = {(a1, b1), (a2, b2), . . . }, where
(a1, b1) = (r, r), and (ai, bi) = (h(ai−1, g(ai−1, bi−1)), g(ai−1, bi−1)) for each i > 1. We
have the following claim regarding S.

Claim 2:  We have that Aai ,bi = 1 and Cai ,bi = 1 for all i ∈ {2 , 3 , . . . }.

Proof  The fact that Cai,bi = 1 for all i ∈ {2, 3, . . . } follows from the definition of ai, bi and
the function h, since (ai, bi) = (h(ai−1, g(ai−1, bi−1)), g(ai−1, bi−1)) for all i > 1. For
the other part we use induction. It can be easily checked that Aa1,b1 = Ar,r = 1. Assume
Aai,bi = 1 for some i ≥ 1. Hence, we have from claim 1 that Aai,g(ai,bi) = 1. Applying
claim 1 again we have that Ah(ai,g(ai,bi)),g(ai,bi) = 1 which completes the induction. □

Now notice that the sequence S satisfies,

	 ai+1 ≤ ai, bi+1 ≥ bi� (A27)

for all i ∈ {1, 2, . . . }. This is because bi+1 = g(ai, bi) ≥ bi by definition of function g and
ai+1 = h(ai, g(ai, bi)) ≤ ai by definition of function h. Additionally, from the definition of
sequence S, it can be easily seen that if (ai+1, bi+1) = (ai, bi) for some i ≥ 1, then we have
(aj , bj) = (ai, bi) for all j ≥ i. Combining the above property with (A27), we have that the
sequence S is eventually constant. In particular, there exists i ≥ 1 such that (aj , bj) = (ā, b̄)
for all j ≥ i. It is also not difficult to see that the minimum such i satisfies i ≤ n. To see
this, notice that,

	
n − 1 ≥ bi − ai =

i−1∑
j=1

[bj+1 − bj + aj − aj+1] ≥ (i − 1), � (A28)

where the last inequality follows since for each j < i, we should have aj+1 ≤ aj
and bj+1 ≥ bj , and at least one of the two inequalities is strict (if not we will have
(aj+1, bj+1) = (aj , bj) which will contradict the minimality of i).

From claim 2 we have that Aā,b̄ = 1 and Cā,b̄ = 1. We also prove that Bā,b̄ = 1. To
prove this, pick any j > i. We have that (aj+1, bj+1) = (h(aj , g(aj , bj)), g(aj , bj)), which
reduces to (ā, b̄) = (h(ā, g(ā, b̄)), g(ā, b̄)). Hence, we have b̄ = g(ā, b̄). Notice that since
from the definition of g, we have that Bā,g(ā,b̄) = 1 we have that Bā,b̄ = 1 as desired. Hence,
(a∗, b∗) exists and is equal to (ā, b̄).

To find (ā, b̄) we enumerate the sequence S. As established by (A28), the sequence
becomes constant before n steps. Hence, this process is more efficient compared to the naive
scheme which evaluates µa,b values for all a, b ∈ [1 : n].

Note: In Algorithm 4 although we have defined µa,b, g(a, b), h(a, b), Aa,b, Ba,b, and Ca,b
for all a, b ∈ [1 : n], we only require computing above for (a, b) tuples in S.

Dynamic Games and Applications

Author Contributions  M.W. and M.N. developed the idea. M.W. designed the algorithms and did the proofs.
M.N. verified and provided suggestions to improve the methods. M.N supervised the work. M.W. and M.N.
discussed the results and contributed to the final manuscript.

Funding  Open access funding provided by SCELC, Statewide California Electronic Library Consortium.
This work was supported in part by one or more of: NSF CCF-1718477, NSF SpecEES 1824418.

Data Availability  No datasets were generated or analysed during the current study.

Declarations

Conflict of interest  The authors have no Conflict of interest to declare that are relevant to the content of this
article.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1.	 Mukhopadhyay S, Sahoo S, Sinha A (2022) k-experts - online policies and fundamental limits. In: Pro-
ceedings of The 25th international conference on artificial intelligence and statistics, pp 342–365

2.	 Orabona F (2023) A modern introduction to online learning. arXiv:1912.13213
3.	 Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit problem. Mach

Learn 47:235–256
4.	 Lai T, Robbins H (1985) Asymptotically efficient adaptive allocation rules. Adv Appl Math 6(1):4–22.

https://doi.org/10.1016/0196-8858(85)90002-8
5.	 Lattimore T, Szepesvári C (2020) Bandit Algorithms. Cambridge University Press, Cambridge
6.	 Zinkevich M (2003) Online convex programming and generalized infinitesimal gradient ascent. In:

Proceedings of the twentieth international conference on machine learning. AAAI Press, ICML’03, p
928–935

7.	 Agarwal A, Dekel O, Xiao L (2010) Optimal algorithms for online convex optimization with multi-
point bandit feedback. In: Annual conference computational learning theory

8.	 Hazan E, Kale S (2014) Beyond the regret minimization barrier: optimal algorithms for stochastic
strongly-convex optimization. J Mach Learn Res 15(1):2489–2512

9.	 Bubeck S, Nicolò CB (2012). Regret analysis of stochastic and nonstochastic multi-armed bandit prob-
lems. https://doi.org/10.1561/2200000024

10.	 O’Donoghue B, Lattimore T, Osband I (2021) Matrix games with bandit feedback
11.	 Rosenthal RW (1973) A class of games possessing pure-strategy Nash equilibria. Internat J Game The-

ory 2:65–67
12.	 Angelidakis H, Fotakis D, Lianeas T (2013) Stochastic congestion games with risk-averse players. In:

Lecture Notes in Computer Science, https://doi.org/10.1007/978-3-642-41392-6_8
13.	 Nikolova E, Stier-Moses NE (2011) Stochastic selfish routing. In: Persiano G (ed) Algorithmic Game

Theory, pp 314–325
14.	 Harks T, Henle M, Klimm M, et al (2022) Multi-leader congestion games with an adversary. In: Pro-

ceedings of the AAAI conference on artificial intelligence, pp 5068–5075
15.	 Babaioff M, Kleinberg R, Papadimitriou CH (2009) Congestion games with malicious players. Games

Econ Behav 67(1):22–35
16.	 Syrgkanis V (2010) The complexity of equilibria in cost sharing games. pp 366–377, ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​

.​1​0​0​7​/​9​7​8​-​3​-​6​4​2​-​1​7​5​7​2​-​5​_​3​0​​​​​​​

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1912.13213
https://doi.org/10.1016/0196-8858(85)90002-8
https://doi.org/10.1561/2200000024
https://doi.org/10.1007/978-3-642-41392-6_8
https://doi.org/10.1007/978-3-642-17572-5_30
https://doi.org/10.1007/978-3-642-17572-5_30

Dynamic Games and Applications

17.	 Akkarajitsakul K, Hossain E, Niyato D et al (2011) Game theoretic approaches for multiple access in
wireless networks: a survey. IEEE Commun Surv Tutor 13(3):372–395. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​1​​0​9​/​S​U​​R​V​.​
2​0​​1​1​.​1​2​2​​3​1​0​.​​0​0​0​1​1​9

18.	 Felegyhazi M, Hubaux JP (2006) Game theory in wireless networks: A tutorial. ACM Comput Surveys
19.	 Garg R, Kamra A, Khurana V (2002) A game-theoretic approach towards congestion control in com-

munication networks. SIGCOMM Comput Commun Rev 32(3):47–61
20.	 Aryafar E, Keshavarz-Haddad A, Wang M, et al (2013) RAT selection games in HetNets. In: 2013 Pro-

ceedings IEEE INFOCOM, pp 998–1006, https://doi.org/10.1109/INFCOM.2013.6566889
21.	 Felegyhazi M, Cagalj M, Bidokhti SS et al (2007) Non-cooperative multi-radio channel allocation in

wireless networks. IEEE Int Conf Computer Commun 2007:1442–1450. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​I​N​F​C​
O​M​.​2​0​0​7​.​1​7​0​​​​​​​

22.	 Li B, Qu Q, Yan Z, et al (2015) Survey on OFDMA based MAC protocols for the next generation
WLAN. In: 2015 IEEE wireless communications and networking conference workshops, pp 131–135,
https://doi.org/10.1109/WCNCW.2015.7122542

23.	 Nash J (1951) Non-cooperative games. Ann Math 54(2):286–295
24.	 Nash JF (1950) Equilibrium points in n-person games. Proc Natl Acad Sci 36(1):48–49. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​

/​1​0​.​1​0​7​3​/​p​n​a​s​.​3​6​.​1​.​4​8​​​​​​​
25.	 Aumann R (1974) Subjectivity and correlation in randomized strategies. J Math Econ 1:67–96. ​h​t​t​p​s​:​/​/​

d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​0​3​0​4​-​4​0​6​8​(​7​4​)​9​0​0​3​7​-​8​​​​​​​
26.	 Aumann RJ (1987) Correlated equilibrium as an expression of Bayesian rationality. Econometrica

55(1):1–18
27.	 Osborne MJ, Rubinstein A (1994) A Course in Game Theory, MIT Press Books, vol 1. The MIT Press
28.	 Cui Q, Xiong Z, Fazel M, et al (2022) Learning in congestion games with bandit feedback. ArXiv

abs/2206.01880
29.	 Solan E, Vieille N (2002) Correlated equilibrium in stochastic games. Games Econ Behav 38(2):362–

399. https://doi.org/10.1006/game.2001.0887
30.	 Monderer D, Shapley LS (1996) Potential games. Games Econ Behav 14(1):124–143. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​

0​.​1​0​0​6​/​g​a​m​e​.​1​9​9​6​.​0​0​4​4​​​​​​​
31.	 Chien S, Sinclair A (2011) Convergence to approximate Nash equilibria in congestion games. Games

Econ Behav 71(2):315–327. https://doi.org/10.1016/j.geb.2009.05.004
32.	 Bhawalkar K, Gairing M, Roughgarden T (2010) Weighted congestion games: Price of anarchy, univer-

sal worst-case examples, and tightness. In: Lecture Notes in Computer Science, pp 17–28, ​h​t​t​p​s​:​/​/​d​o​i​.​o​
r​g​/​1​0​.​1​0​0​7​/​9​7​8​-​3​-​6​4​2​-​1​5​7​8​1​-​3​_​2​​​​​​​

33.	 Milchtaich I (1996) Congestion games with player-specific payoff functions. Games Econ Behav
13(1):111–124. https://doi.org/10.1006/game.1996.0027

34.	 Ackermann H, Goldberg PW, Mirrokni VS et al (2008) A unified approach to congestion games and
two-sided markets. Internet Math 5(4):439–458

35.	 Fotakis D, Kontogiannis S, Koutsoupias E et al (2009) The structure and complexity of Nash equilibria
for a selfish routing game. Theor Comput Sci 410(36):3305–3326. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​t​c​s​.​2​0​0​8​.​0​1​
.​0​0​4​​​​​​​

36.	 Gairing M, Lücking T, Mavronicolas M, et al (2004) Computing Nash equilibria for scheduling on
restricted parallel links. In: Proceedings of the thirty-sixth annual ACM symposium on theory of com-
puting, STOC ’04, p 613–622

37.	 Grundel S, Borm P, Hamers H (2013) Resource allocation games: a compromise stable extension of
bankruptcy games. Math Methods Oper Res 78:149–169

38.	 Grundel S, Borm P, Hamers H (2018) Resource allocation problems with concave reward functions.
TOP. https://doi.org/10.1007/s11750-018-0482-7

39.	 Thomas CD (2021) Strategic experimentation with congestion. Am Econ J Microecon 13(1):1–82
40.	 Bolton P, Harris C (1999) Strategic experimentation. Econometrica 67(2):349–374
41.	 Malanchini I, Cesana M, Gatti N (2013) Network selection and resource allocation games for wireless

access networks. IEEE Trans Mob Comput 12(12):2427–2440. https://doi.org/10.1109/TMC.2012.207
42.	 Anshelevich E, Dasgupta A, Kleinberg J, et al (2004) The price of stability for network design with fair

cost allocation. In: 45th Annual IEEE symposium on foundations of computer science, pp 295–304,
https://doi.org/10.1109/FOCS.2004.68

43.	 Liu M, Wu Y (2008) Spectum sharing as congestion games. In: 2008 46th annual Allerton conference
on communication, control, and computing, pp 1146–1153

44.	 Liu M, Ahmad SHA, Wu Y (2009) Congestion games with resource reuse and applications in spectrum
sharing. In: 2009 International conference on game theory for networks, pp 171–179, ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​
.​​1​1​​0​9​/​​G​A​M​E​N​​​E​T​S​.​2​​​0​0​9​.​​5​1​3​7​3​9​9

45.	 Zhang F, Wang MM (2021) Stochastic congestion game for load balancing in mobile-edge computing.
IEEE Internet Things J 8(2):778–790. https://doi.org/10.1109/JIOT.2020.3008009

https://doi.org/10.1109/SURV.2011.122310.000119
https://doi.org/10.1109/SURV.2011.122310.000119
https://doi.org/10.1109/INFCOM.2013.6566889
https://doi.org/10.1109/INFCOM.2007.170
https://doi.org/10.1109/INFCOM.2007.170
https://doi.org/10.1109/WCNCW.2015.7122542
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.1016/0304-4068(74)90037-8
https://doi.org/10.1016/0304-4068(74)90037-8
https://doi.org/10.1006/game.2001.0887
https://doi.org/10.1006/game.1996.0044
https://doi.org/10.1006/game.1996.0044
https://doi.org/10.1016/j.geb.2009.05.004
https://doi.org/10.1007/978-3-642-15781-3_2
https://doi.org/10.1007/978-3-642-15781-3_2
https://doi.org/10.1006/game.1996.0027
https://doi.org/10.1016/j.tcs.2008.01.004
https://doi.org/10.1016/j.tcs.2008.01.004
https://doi.org/10.1007/s11750-018-0482-7
https://doi.org/10.1109/TMC.2012.207
https://doi.org/10.1109/FOCS.2004.68
https://doi.org/10.1109/GAMENETS.2009.5137399
https://doi.org/10.1109/GAMENETS.2009.5137399
https://doi.org/10.1109/JIOT.2020.3008009

Dynamic Games and Applications

46.	 Ibrahim M, Khawam K, Tohme S (2010) Congestion games for distributed radio access selection in
broadband networks. In: 2010 IEEE global telecommunications conference 2010, pp 1–5, ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​
g​/​1​0​.​1​1​0​9​/​G​L​O​C​O​M​.​2​0​1​0​.​5​6​8​3​8​6​2​​​​​​​

47.	 Le S, Wu Y, Toyoda M (2020) A congestion game framework for service chain composition in NFV
with function benefit. Inf Sci 514:512–522

48.	 Zhang L, Gong K, Xu M (2019) Congestion control in charging stations allocation with Q-learning.
Sustainability. https://doi.org/10.3390/su11143900

49.	 Jin C, Netrapalli P, Jordan M (2020) What is local optimality in nonconvex-nonconcave minimax opti-
mization? In: Proceedings of the 37th international conference on machine learning, vol 119. PMLR, pp
4880–4889

50.	 Bertsekas D (2009) Convex optimization theory, vol 1. Athena Scientific
51.	 Wijewardena M, Neely MJ (2023) A two-player resource-sharing game with asymmetric information.

Games 14(5):61. https://doi.org/10.3390/g14050061
52.	 Wijewardena M, Neely MJ (2024) Multi-player resource-sharing games with fair reward allocation.

arXiv:2402.05300
53.	 Ibaraki T, Katoh N (1988) Resource allocation problems: algorithmic approaches. MIT Press, Cambridge

Publisher's Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1109/GLOCOM.2010.5683862
https://doi.org/10.1109/GLOCOM.2010.5683862
https://doi.org/10.3390/su11143900
https://doi.org/10.3390/g14050061
http://arxiv.org/abs/2402.05300

	﻿Online Multi-player Resource-Sharing Games with Bandit Feedback
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿1.1﻿ ﻿Time Average Expected Reward
	﻿1.2﻿ ﻿Worst-Case Time Average Expected Reward
	﻿1.3﻿ ﻿Related Work
	﻿1.4﻿ ﻿Background on Resource-Sharing Games
	﻿1.5﻿ ﻿Contributions
	﻿1.6﻿ ﻿Notation

	﻿2﻿ ﻿Worst-Case Expected Reward Maximization
	﻿2.1﻿ ﻿Finding f﻿worst,*﻿ with Known E
	﻿﻿2.1.1﻿ ﻿Case ﻿￼﻿﻿
	﻿﻿2.1.2﻿ ﻿Case ﻿￼﻿﻿

	﻿2.2﻿ ﻿Bandit Algorithm
	﻿2.3﻿ ﻿Analysis of the Algorithm
	﻿3﻿ ﻿Simulation Results
	﻿4﻿ ﻿Conclusions
	﻿﻿Appendix A: Madow’s Sampling Technique
	﻿﻿Appendix B: Proof of Theorem ﻿2﻿
	﻿﻿B.0.1 Solving (P1-1)
	﻿B.0.2 Solving (P1-2)
	﻿B.0.3 Finding ﻿￼﻿﻿

	﻿Appendix C
	﻿﻿Appendix D: Algorithm to Project onto ﻿￼﻿﻿
	﻿References

