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Abstract

This paper considers an online multi-player resource-sharing game with bandit feedback.
Multiple players choose from a finite collection of resources in a time slotted system. In
each time slot, each resource brings a random reward that is equally divided among the
players who choose it. The reward vector is independent and identically distributed over
the time slots. The statistics of the reward vector are unknown to the players. During
each time slot, for each resource chosen by the first player, they receive as feedback the
reward of the resource and the number of players who chose it, after the choice is made.
We develop a novel Upper Confidence Bound (UCB) algorithm that learns the mean
rewards using the feedback and maximizes the worst-case time-average expected reward
of the first player. The algorithm gets within O(log(T")/v/T) of optimality within 7 time
slots. The simulations depict fast convergence of the learnt policy in comparison to the
worst-case optimal policy.

Keywords Congestion games - Potential games - Fair reward allocation - Worst-case
expected reward maximization

1 Introduction

In this paper, we consider the following game with m > 2 players numbered 1, 2, ..., m, and
n > 2resources numbered 1,2, - - -, n. The game evolves in slotted time ¢ € {1,2,...}.The
vector W (¢) € R™ denotes the random reward vector at time ¢ € {1,2, ... }. In particular,
foreachs € {1,2,...,n}andeacht € {1,2,... }, W;(¢) > 0 denotes the reward offered by
resource i at time ¢. We assume that W (¢) are i.i.d. withE{W ()} = E = [Ey, E>, ..., E,].
The vector E is unknown to the players. During each time slot, each player selects 7 resources
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without knowing the other player’s selections (assume that 0 < r < n), and without knowl-
edge of W (¢). During time slot ¢, for each k € {1,2,...,n}, each player selecting resource
k receives a reward of Wy, (t)/Sk(t) from resource k, where Sy (¢) is the number of players
choosing resource k during time slot . For each ¢ € {1,2,...,m}, let A;(¢) denote the set
of resources chosen by player i during time slot z. During time slot ¢, after the selection of
resources, player i receives (Wy(t), Sk (t)) for k € A;(t) as feedback.

The total reward received by player i during time slot zis ) _, - Aty W (t)/Sk(t). The

time-average expected reward of player i in a finite time horizon of T time slots is

1 o Wi (t)

T Z B Z Sk(t)

t=1 kEA;(t)

The goal is to design policies to maximize the time-average expected reward of player
1. However, this is not possible since player 1 does not have control over the policies of
the other players. Hence, we focus on maximizing the worst-case time-average expected
reward of player 1, which we define in the sections below.

For ke {1,2,...,n} and t €{1,2,...}, define Xy(t) =", ljea, ). Hence,
X (t) is the number of players (other than player 1) choosing resource & during time slot
t. Also, we have Si(t) = 1jkea, (1)) + Xk (t). For each ¢, it can be shown that X (t) € 7,
where

j=1

j:{me{O,l,...,m—l}”

ij:(m—l)r}. (1)

Additionally, for a given t € {1,2,...}, it can be easily shown that for any « € 7, there
exists a way for players 2 to m to choose resources such that X (t) = x.

1.1 Time Average Expected Reward

Define H(t) = {(A1(7), {Wk(7),Sk(7);1 <k <n,k € A1(7)});1 <7 < t}, the his-
tory up to time ¢ Given H(t), the action of player 1 at time ¢ is conditionally independent
of the other player’s actions at time ¢. Define the random vector p(¢) with components
pr(t) = E{lpkea, o) /H(t)}. Since D), Like.a, (1)) = r. it can be shown that p(t) € Ay, .,
where A,, - is the (n, r)-hypersimplex given by

Ay = {pemzzpi:r,pi € [0,1] Vie{l,&...,n}}. 2)
i=1

Also, notice that given p € A,, ., we can use the Madow’s sampling technique (see for exam-
ple [1]) to sample an action set A C {1,2,...,n} such that, |A| =7, and pr = E{1,c4}
foreach k € {1,2,...,n}.

Notice that we can write the time-average expected reward R(7) of player 1 in a finite
time horizon of T time slots as
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t=1 k=1

:(C);i” me{ 20 - TXT; X))

where (a) follows since W (t) is independent of the actions of players at time #, (b) follows
since 1[re4, (+) is independent of X} (t) conditioned on H(t), (c) follows since p(t) is an
H(t)-measurable random variable, and the function f : R} x Z% — R is defined as

— Eipe
f(nw)—%Hmk- )

The time-average expected reward of player 1 is

R:=1lim Tlgfx; R(T). )

1.2 Worst-Case Time Average Expected Reward
Notice that since player 1 does not have access to X (¢) when taking action during time slot

t, they cannot directly maximize R defined in (5). But notice that for fixed p € A,, ,, the
worst-case value of f(p, z) is V't (p), where

f (p) = min f(p, ). (6)

Combining with (3), the worst-case time-average expected reward in a finite time horizon
of T time slots is given by

T
Rworst (T) _ % Z E{fworst (p(t))} (7)

Hence, the worst-case time-average expected reward of player 1 is

RY°™" = lim inf R“"™Y(T). ®)

T—o00
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Instead of maximizing R, player 1 can take decisions to maximize R"°"™" without knowl-

edge of the decisions of other players.
From (7) and (8), we have that the maximum possible value of RVo'st is fVorst:* where
fworst,*

— ma min — worst
peAf,,,:cle(p’ x) pfengfr f (p), )

that is achieved by using the policy p(t) = p* in each time slot, where

P’ € arg max ot (p). (10)

The f%°rs* function is unknown to player 1 because the function fdefined in (4) is in terms
of the unknown E;, values. Hence, we aim to design an algorithm that achieves a worst-case
time-average expected reward close to fV°™%* using the bandit feedback.'

1.3 Related Work

The main challenge of applying online optimization techniques such as online gradient
descent [2] to the above problem is due to the fact that we do not know the function f'since
we do not know E. The problem shares certain similarities with the problems of multi-
armed bandit learning (MAB) [3, 4], adversarial bandit learning [5], online-convex optimi-
zation [6], online-convex optimization with multi-point bandit feedback [7], and stochastic
convex optimization [8].

Multi-armed bandit learning is extensively studied in the literature. The classical MAB
problem consists of a fixed number of arms each with fixed mean reward. A player chooses
an arm in each iteration of the game, without knowledge about the mean rewards, where
after the choice is made the reward of the chosen arm is revealed to the player. The goal is
to learn to choose the arm with the highest mean reward. An algorithm for the MAB prob-
lem has to explore all the arms in order to learn the best arm. But in doing so, the player
also chooses arms with low mean reward, which affects the long term reward of the player.
Upper confidence bound based algorithms, where the algorithm maintains an upper bound
on the mean cost of each arm, are popular in the MAB literature [5, 9]. Our problem cannot
be addressed using classical MAB approaches since the reward not only depends on the
chosen resource, but also on the choices of other players. Another related problem is adver-
sarial bandit learning. Unlike the worst-case approach, the adversarial bandit framework
cannot be used to obtain utility guarantees for player 1 that are independent of the actions
of the other players.

The framework of online optimization also shares similarities with our work since our
goal is to design an online algorithm to minimize f%°™!(p). However, notice that fworst
depends on the unknown vector E. We also do not have access to an unbiased estimate or
an unbiased gradient estimate of the function f"°™' due to its definition in (6). Hence, the
work on online-convex optimization where partial information on the underlying reward

! One can relax the constraint of each user choosing exactly r resources by allowing each user to select at most
7 resources. Since the rewards are assumed to be nonnegative, this will not affect £*°*st, A formal proof of
this statement can also be found in our technical report [52].
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functions are revealed, such as online-convex optimization with multi-point bandit feed-
back, and the approaches based on stochastic gradient descent are also not applicable. Our
problem is more similar to the work of [10] on zero-sum matrix games with bandit feed-
back. However, the above work considers a two-player scenario where both players receive
the actions and the rewards of themselves and the opponent as feedback.

Our game model has been studied for the offline non-stochastic case with full informa-
tion on E under the more general framework of resource-sharing games [11], also known as
congestion games. In these games, the per-player reward of a resource is a general function
of the number of players selecting the resource. Also, an action for a player is a subset of the
resources, where the allowed subsets make up the player’s action space. Resource-sharing
games have also been extended to various stochastic settings [12, 13]. Problems similar to
our work have been studied in the context of adversarial resource-sharing games. The work
of [14] considers an adversarial resource-sharing game where each player chooses a single
resource from a collection of resources, after which an adversary chooses the resource cho-
sen by the maximum number of players. Also, non-atomic congestion games with malicious
players have been considered through the work of [15]. The above works assume that E is
known to all the players.

We have simplified the general resource-sharing game model described above in two
ways. First, we assume a fair-reward allocation model, where we have assumed the exis-
tence of a reward for each resource, which is divided equally between the players selecting
it. Second, we have assumed simple action spaces for players by allowing each player to
select an arbitrary subset of  resources. Resource-sharing games with special per-player
reward definitions have been considered in the literature. One such notable case is when
the per-player reward of a resource is nondecreasing in the number of players selecting the
resource. These games are called cost-sharing games [ 16]. The particular case when the total
cost of a resource is divided equally among the players choosing it is called fair cost-sharing
games. In such a model, a player would prefer to select resources selected by many players.
In the fair reward allocation model considered in our work, players have the opposite incen-
tive to select resources selected by a small number of players.

One application of our model is multiple access control (MAC) in communication sys-
tems, where multiple users access communication channels, and the data rate of a channel
is shared amongst the users who select it [17-19]. Here, a channel can be shared using
Time Division Multiple Access (TDMA) or Frequency Division Multiple Access (FDMA),
where in TDMA, the channel is time-shared among the users [20, 21], whereas in FDMA,
the channel is frequency-shared among the users [22]. In both cases, the total data rate
supported by the channel can be considered the reward of the channel. Here, limiting the
number of channels accessed by a single user in a given time slot is desirable. Additionally,
the channel data rate should be shared among the users accessing the channel.

The worst-case expected reward is an important objective different from Nash-equilib-
rium [23, 24] and correlated equilibrium [25-27]. The problem of finding an approximate
Nash equilibrium of a congestion game with bandit feedback has been considered [28].
However, implementing the algorithms by [28] requires cooperation among players. In
contrast, the worst-case approach requires no cooperation among the players. Additionally,
player 1 does not have to make assumptions about other players’ strategies. Hence, under-
standing the worst-case expected reward is important even when the other players are not
necessarily playing to hurt player 1. However, in practice, some players play just to hurt oth-
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ers. One particular example arises in military communications. Consider a multiple access
communication system used in a military setting (for instance, consider the TDMA scheme
considered in [21], which has a similar structure to our model). Here, some users may trans-
mit to disrupt the communication capabilities of other users. Our formulation is applicable
even when the other users form a coalition with the intention of reducing the data rate of
a single user. Another motivation for the worst-case objective of this paper is to quantify
the degree of punishment that can be inflicted on a particular user. This value is useful, for
example, in repeated game algorithms that design punishment modes into the strategy space
in order to discourage deviant behavior [27, 29].

1.4 Background on Resource-Sharing Games

The resource-sharing game was first studied by [11]. These games, also called congestion
games, fall under the general category of potential games [30]. In potential games, the effect
of any player changing policies is captured by the change of a global potential function. Var-
ious extensions to the classical resource sharing game introduced by [11] have been stud-
ied in the literature [31]. Some such extensions are stochastic resource-sharing games [12,
13], weighted resource-sharing games [32], games with player-dependent reward alloca-
tion [33], games with resources having preferences over players [34], and singleton games,
where each player is only allowed to choose a single resource [35, 36].

Also similar to resource-sharing games are resource allocation games [37, 38]. In these
games, a resource must be fairly divided among claimants claiming a certain portion. There
is also work combining resource-sharing games with bandits and strategic experimentation.
The work of [39] considers a two-player game where players continually choose between
their private risky arm and a shared safe arm. Only one player can activate the safe arm at
any given time, which guarantees a payoff. This congestion effect on the safe arm gives
rise to strategic consideration among the players. These works are based on the model of
multi-agent, multi-armed bandit problems introduced by [40]. Here, multiple players are
faced with the same multi-armed bandit problem. In contrast to the classic single-agent set-
ting, players can learn from other players’ feedback, resulting in some players being able to
free-ride on other players’ experiments. This phenomena induces strategic experimentation.

Resource-sharing games have applications in multiple-access [17], network selec-
tion [41], network design [42], spectrum sharing [43], resource sharing in wireless net-
works [44], load balancing networks [45], radio access selection [46], service chains [47],
and congestion control [48]

1.5 Contributions

We study the problem of maximizing the worst-case time average expected reward of online
resource-sharing games with a fair-reward allocation model in the presence of bandit feed-
back on the mean rewards of the resources. We assume a model where in each time slot,
each player is allowed to choose any » element subset of the »n available resources, and the
reward of a resource is shared among the users selecting it. We propose a novel algorithm
combining the upper confidence bound technique with Madow’s sampling technique and
Euclidean projection onto the (n, r)-hypersimplex, to maximize the worst-case time average
expected reward of player 1. In particular, in each time slot of the algorithm, we find p(¢) in
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the (n, r)-hypersimplex, after which we sample the 7 resources for player 1 using Madow’s
sampling technique. The algorithm gets within O(log(T")/v/T) of optimality in a finite
time-horizon of 7 time slots. The parameters of the algorithm do not depend on 7. Hence,
the above guarantee can be achieved even if the time horizon 7 is unknown.

1.6 Notation

We use calligraphic letters to denote sets. Vectors and matrices are denoted in boldface
characters. For integers n and m, we denote by [n : m] the set of integers between n and
m inclusive. Also, we use N ={1,2,3,...} to denote the set of positive integers and
Ny ={0,1,2,...} to denote the set of non-negative integers.

2 Worst-Case Expected Reward Maximization

First we state our assumptions.

Al The collection {W(t); 1 < t} is independent and identically distributed and satisfies
W;(t) > 0forallt € Nand i € [1 : n]. Our formulation does not require the compo-
nents of W (t) to be mutually independent for a particular ¢ > 1.

A2 Wehave Wy(t) = Ex + ng(t) forall 1 < k < n, where n(¢) for ¢ > 1 and
k € [1 : n] are zero-mean, 1-sub-Gaussian random variables.

Before moving on to the main results of the paper, we consider the problem of finding

frorst* and p* when E is known, where fV°™%* and p* are defined in (9) and (10),

respectively.

2.1 Finding f*°"*" with Known E

If E is known, given p € A, ., the problem of finding f™°™'(p) has been well studied
in the literature. In particular, we can find * € argmingc 7 f(p, ). In Appendix C, we
provide the algorithm for completeness. Hence, we can use standard min-max optimization
techniques such as min-oracle algorithm [49] to find fV°™%* and p*. Also, since J is a
finite set, and the function f(-, ) is concave for all « € 7, from the Danskin’s theorem
(see proposition 5.4.9.(b) of [50]), we can calculate a subgradient of f"°'' at p € A,, .
as Vp fWorst(p) = V,, f(p, ¢*) where * € arg minge 7 f(p, ). Hence, we can also use
standard subgradient descent with Euclidean projections onto A, . (see Algorithm 4 to
project onto A, ;) to find fVerst*,

The work of [51] finds f¥°rst* and p* explicitly for the case m = 2,r = 1. We discuss
the solution of this case in Sect. 2.1.1. In Sect. 2.1.2, we extend this to the case m = 3,7 = 1.
These explicit solutions provide a fast way to find f¥°™%"* and provide insight into the
structure of optimal p*. For these two sections we will use the notation A,, = A, ;.

211 Casem = 2,r =1

In the following theorem, we restate the result of [51].

Theorem 1 Consider the special case m = 2,r = 1 with n € N. Without loss of gen-
erality, assume that E satisfies Ey, > Ex.; for all k € [1 : n — 1]. Define the sequence
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‘=3

1
Z" L’
k=1 B

returns the least index in the case of ties. Then, p* can defined by

(Vi 1 < i< n) according to V; = Let v = argmax ;<;<, Vi, where arg max

1
. —2E— if 1<k<w
pk—{ Oz:y':lE% / o (11)

otherwise.

Proof See [51].00

Assume player 1 follows the policy p* in Theorem 1. It can be shown that the worst-case
for p* occurs when player 2 always chooses resource 1. Consider the strategy profile where
player 1 uses p* and player 2 always chooses resource 1. It can be shown that player 2 can-
not increase their reward by unilaterally deviating from the above profile. See the technical
report [52] for the proof of this fact. Notice that this may not be a Nash equilibrium since
p* may not be the best response of player 1 to the strategy of player 2. However, this prop-
erty incentivizes player 2 to use the above strategy, even if they do not care about hurting
player 1. The above property is not true for general m, ». When m > 2, players [2 : m] can
increase the congestion of resources with high mean rewards to reduce the expected reward
of player 1. In such a scenario, a player in [2 : m] may increase their reward by switching to
a resource with a less mean reward and less congestion. However, there are special cases in
which the above property is true even when m > 2. One such example is discussed in the
casem = 3,7 = 1.

212 Casem = 3, r =1
We first focus on solving the problem minge 7 f(p, x) for given p € A,,.

Lemma 1 Consider the special case m = 3,r = 1 with n € N satisfying n > 2, and a
fixed p € Ay,. Let a = argmax; <<y, E;p;, and b= argmax;<;<p i+q Eip;, where we
assume that arg max returns the least index in the case of ties. Define the two vectors

x!, x? € J, where

x}c:{ 2 ifk=a, andx%:{ 1 ifk € {a,b}, (12)

0 otherwise, 0 otherwise.

Then x* € argmingc 7 f(p, x) can be glven in two cases. 1) E,p, > 3Eypy: We have
¥ =a!. 2) E;pa < SEypy: We have ¥ = x2.

Proof Since x* € J, we know a* has nonnegative components that sum to 2. If * has
only one nonzero component at some index k € {1,...,n}, then z} = 2 and fis minimized
by choosing k = a, so assignment &' holds. Else, * has exactly two nonzero components
atindices k, j € [1 : n] (k # j) and f'is minimized by choosing k = a and j = b, so assign-
ment 22 holds. It remains to compare the two assignments.

Under 21 £(p,) = B+ py By + Sy gy P = Sy piBi — 2258
Under z%: f(p,x?) = Befe 2 prb + Zkg{a by PeEk = Sh peEr — —p“E“ - —prEb

Birkhauser



Dynamic Games and Applications

Comparing the two cases, we have that for assignment x', we require E,pq > 3Eppy
and for assignment 2, we require E,p, < 3Epp,. Hence, we are done. [
The following theorem introduces the solution of the case m = 3,r = 1.

Theorem 2 Consider the special case m = 3,7 = 1 with n € N satisfying n > 2. Without

loss of generality, assume that E satisfies Ey, > Eg1; for all k € [1 : n— 1]. Define the

two sequences (U;; 1 < i < n)and (Vy; 2 < i < n) according to U; = % and
§+Zk-:2 By,

izl —. Let v = argmax ;<< U;, and v = argmaxg<;<, Vi, where arg max

Zk:l Ey,

returns the least index in the case of ties. Then, p* can be described under two cases.

Vi=

Casel: If V, > U,

1
. ok if 1<k<vw
Ph=9 2.7 (13)
0 otherwise.
Case2: If U, >V,
E.i
——— ifk=1
e "
Pr=Y B if2<k<u 14
Ty, 2ERS
0 otherwise.

Proof Given in Appendix B. [J

It is interesting to note the variation of choice probabilities in both cases of the theorem.
In case 1, player 1 first chooses a set of resources [1 : v] (v resources with the highest mean
rewards) to be chosen with nonzero probability. Then player 1 assigns probability p; for
k € [1 : v] such that the p} o 1/Ej. This behavior can be explained as follows. First, player
1 never chooses resources with mean rewards below a certain threshold. Second, within the
collection of resources with relatively high mean rewards, player 1 is tempted to choose
resources with lower mean rewards with high probability since, in the worst case, opponents
choose the rewards with the highest mean rewards.

In Case 2, a similar behavior can be observed. Player 1 first chooses a set of resources
[1 : u] to be chosen with nonzero probability. However, now player 1 assigns probability
p; for k € [1 : ] such that p} « 3/F; and p} o 1/E}, for k € [2 : u]. In particular, player
1 chooses the first resource with a higher probability. To see this clearly, consider the two
scenarios in Fig. 1, where we consider two possibilities of E for n = 10 (Scenario 1 and
Scenario 2). Figure 1-Left denotes the plot of E for the two scenarios. Although in the two
scenarios, F is different only in E; by 0.1, Scenario 1 belongs to Case 1 of Theorem 2,
whereas Scenario 2 belongs to Case 2. Figure 1-Right shows the higher choice probability
of resource 1 in Scenario 2. Here, the mean reward of the first resource is high enough to
give a high per-player reward even if many players select it.
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Fig. 1 Left: The mean rewards of the resources, Right: Probabilities of choosing the resources

Notice that in both scenarios, we have 1 € argmaxi<;<,F;p;, and
2 € argmaxi<j<n,i#1 £;p;. Also, since Scenario 1 belongs to Case 1 of Theorem 2, we
have pjEq < 3p5E>. Hence, from Lemma 1, we have that the worst-case for p* occurs
when player 2 always chooses resource 1 and player 3 always chooses resource 2 (or vice
versa). Using a similar argument, one can establish that in Scenario 2, the worst-case for
player 1 occurs when player 2 and player 3 always choose resource 1. Assuming player 1
plays the strategy p*, and the other two players play the strategies that give the worst-case to
p*, the expected reward vector of the three players in Scenario 1 is (4.52, 7.87, 5.57). It turns
out that in the above strategy profile, the strategies of players 2 and 3 are the best responses
for the other two players. In fact this property holds more generally when m = 3,7 = 1, and
the solution comes from Case 1 of Theorem 2 as proved in [52]. However this is not true in
Scenario 2, where the same vector is (4.54, 3.79, 3.79).

2.2 Bandit Algorithm

Now, we move on to the algorithm and analysis. Before introducing the algorithm, we begin
with a few definitions and some preliminary results that are useful.

Our algorithm, provided in Algorithm 1 below, uses the first # time slots as an initial
exploration phase that obtains at least one sample of the reward of each of the n resources.
The main part of the algorithm starts in time slot n + 1.

Forall te {n+1,n+2,...} and k € [1:n] define ny(t) as the number of times
player 1 chooses resource k before time slot 7. Formally, ny(t) = Zi;ll 1[ke, (r))> Where
Aj(t) denotes the set of resources chosen by player 1 during time slot 7. Notice that due
to initial exploration phase of Algorithm 1, we have that ny(t) > 1 for all k£ € [1 : n] and
te{n+1,n+2,...}.Foreacht € {n+1,n+2,...} and k € [1 : n], define

B 1 t—1
Ey(t) = O] D ke, Wi(7). (15)
T=1

Fix 4§, €(0,1) for each te€{n+1,n+2,...} such that & >d;41 for all
te{n+1,n+2,...}.Foreacht € {n+1,n+2,...} and k € [1 : n], define
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ni () (i () +1)
210 (2eczz (021

3 _ 16)
Ep(t) = Ex(t) + (
k( ) k( ) nk(t)
Also, define the functions f; : R" x N — Rfort € {n+1,n+2,...}as
~ Ex(t)p
&(4)Pk
filpm) = - a7

periR

Before moving on to the main result, we introduce the following well-known lemma.

Lemma 2 Given a sequence {X;}3° , of independent zero-mean 1-sub Gaussian random
variables, a positive integer-valued random variable G (possibly dependent on the sequence
{Xi}52,)and e € (0, 1), we have

2log (LG(H))

G

2log (LC’;H))

G

Q \

1 G G
EZ;XZS_ Z:

Proof This result is given as an exercise in the work of [5]. See [52] for a proof. [

Fixt € {n+1,n+2,...}and k € [1 : n]. Foreach s € [1 : ny(t)], define Wy (s) as the
reward obtained when the resource k is chosen for the s-th time by player 1. Hence, notice

that Ey(t ( ) Z"’“(t . Notice that from assumption A2, {Wy(s) — B}
is a collectlon of 1ndependent 1 sub Gaussian random variables. Applying Lemma 2 to

{W(t) — Ek}?:"gt) with G = ny(t) and € = J;, we have

1 ny (t) 2log (’"k(t) (’%k (H)+1) )
Wi(s) — Ep) < — ‘ <46
G ;< k(s) = Bx) —es <6, ()
and
Lm0 210g (nk(t><2k<t>+1>)
— Wi(s) — Ey) > ‘ < 6.
The above two inequalities translate to
P{E. > Ex(t)} <4, (20)
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and

() (ni (1) +1)
21og("’“ i )

P{ Ej < Ep(t) —2 e

<o, e2))

forallt € {n+1,n+2,...}and k € [1 : n], where E}(t) is defined in (16).
Now consider the collection {G,,+1,Gpt2,. ..} of events that shall be called “good"
events: Fort € {n+ 1,n+2,...} the “good" event G is defined by the inequalities
Ey, < Ex(t), (22)

and

ng(t)(ng(t)+1
210g( JLILHL ))

n(t)

B > Ek(t) -2 23)

for k € [1: n]. Specifically, G; is defined as the event that (22) and (23) hold for all
k € [1 : n]. Combining (20) and (21) with the union bound, we have that

P{G}} < 2né;. (24)
Recall that
* 5t
p*e arg max Y (p), 25)

where the function f%°rt is defined in (6). Let
(ANS argglel‘r} f(p 7:13)7 (26)
where the function f'is defined in (4). Hence, we have that
fworst,* _ f(p*,a:*), (27)

where f7V°rst* is defined in (9). Before moving on to the Algorithm and the main theorem,
we first prove the following lemma.

Lemma3 Fixt€{n+ 1,n+ 2,...}. Assume that the “good" event G is true. Then we
have that

(@) fi(p*,x) > f(p*,x*) for every x € J, where f; is defined in (17), p* is defined in
(25) and x* is defined in (26).
(b) Define
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D, =C+24/2log (t(t;”), (28)
t
where
C = E,.
wetim ¥ (29)

We have that ||V p fi(p, x)||* < nD} for everyp € A, . and x € J.

Proof We prove the two parts separately.

(a) We have that

k()P >0 > ’“p’fk = f(p*,z) > f(p*,x"), (30)
k

where (a) follows since we are in the “good" event G (so (22) holds) and the last
inequality follows from the definition of * in (26).
(b) First, notice that when we are in the event G, we have from (23) that,

k() (ng (8)+1)
2105 (2Dl 511

En(t) < Ep +2 oD

<(a) C+24/2log <t(t; 1)> = Dy, G

t

for all k € [1 : n], where (a) follows since E) < C by definition of C in (29), and
1 <ng(t) <tforte {n+1,n+2,...}bydefinition of ny(t). Hence,

n

B2t
IVafip @ =3 s Hk 7 < ZEk ) <nDj. (32)
k=1 O

We summarize our approach in Algorithm 1. The algorithm relies on three key steps.

First, we assume that given p € A,, ,., we can sample aset A C [1 : n] such that | A| = r,
and E{1gca} = pi forall k € [1 : n]. This can be solved using the Madow’s sampling tech-
nique ([1]). In Appendix A, we provide the algorithm for completeness. The correctness of
the algorithm is established in [1].

Second, we assume we have an oracle that can compute a solu-

tion Yy € argmingec s 22:1 fjﬁ’;, where F; >0 for all i€[l:n|, and

P = [p1,p2,...,Pn] € Ay . This problem is nonconvex due to the fact that .7 is a discrete
set. Nevertheless, the problems of above type can be solved explicitly (we describe a simple
method in Appendix C).

Finally, we assume that given x € R}, we can find the projection ITa,, () of = onto
A, ». An algorithm for this task is given in Appendix D along with the analysis.
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For our algorithm, we also require step size parameters 3; fort € {n+1,n+2,...}
satisfying 8y > Biq1 forallt € {n+1,n+2,...}.

1 for each time slot t € [1:n] do

2 Set A1 () C [1 : n] arbitrarily satisfying |A;(¢)| = and ¢ € A; ().
3 Receive feedback {Wi(t);1 <k <n,k € A (1)}
4 end
5
6
7

—

nitialize p(n + 1) € A, ;.

for each time slott € {n+1,n+2,...,} do

Sample an action set A;(¢) C [1: n] using the Madow’s sampling
technique such that |A;(t)| = r, and pi(t) = E{l ke, @)lp(t)} for each
k € [1 : n]. In particular, given p(t), we sample the above action set
independent of the past H(t) (see Appendix A for the implementation).

8 Receive feedback {Wi(t);1 <k <n,k € A;(t)}.

9 Find x(t) by solving,

z(t) € arg _gleig fu(p(t), z)

using Algorithm 3, where f; is defined in (17).
10 Obtain p(t + 1) by using,

p(t+1) =Ta,, (p(t) + B Vpfi(p(t), (1)),

where IIa,, . (y) denotes the projection of y onto A, , (See Appendix 4
for an algorithm) and f; is the step size parameter.

11 end

Algorithm 1 UCB based algorithm for worst-case maximization
2.3 Analysis of the Algorithm
In this section, we focus on establishing the performance of Algorithm 1.

Theorem3 Fix T e {n+2,n+3,... }.

(a) Running the UCB based worst-case maximization algorithm in Algorithm 1 for T
time slots with By > 0 such that 3; > i1 and 6, € (0, 1) such that 6y > dy41 for all
te{n+1,n+2,...}yields

2nrlog (%)

T

2 T
n n nrC  nDp Zt:nJrl B i

worst, x worst
o T) < 4
/ RYHHT) < 2677 T 2T T
1 d n
+ = 2rC' + — | néy,
T t:;—l < 5t> t

where RV°™Y(T) is the time-average worst case expected reward achieved by
the algorithm (See (7)), C is defined in (29), and D is defined in (28). Notice that the
algorithm does not require the knowledge of T. Hence, the algorithm can be implemented
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in a setting where the time horizon is unknown.
(b) Running Algorithm 1 for T time slots with §; = ©(1/t) and B; = ©(1/+/t) for all
te{n+1,n+2,...} wehave that f*°r"* — R¥1Y(T) < © (log(T)/VT).

Proof We will first prove part-(a).

(a) Fixany ¢t € {n+1,...,T} and assume the “good" event G; holds. Lemma 3 implies
IVpfi(pt),z(t)||?> < nD? < nD32, where the first inequality follows from Lemma 3-(b)
and the second inequality follows since D; < Dy forallt € {n + 1,...,T} (see the defini-
tion of Dy in (28) and use the fact that §; > dr forallt € {n +1,...,T}). Also, we have

fip",2(t) = f(p",2*) = frorst, (33)

where x(t) is defined in line 9 of Algorithm 1, f; is defined in (17), the first inequality fol-
lows from Lemma 3-(a) and the last equality follows from (27). Define

&(t) € argmin f(p(t), ).
Thus
f(p(t), () = F*"(p(t)) (34)

by the definition of f%°™! in (6). Due to the definition of =(¢) in line 9 of Algorithm 1, we
have

fe(p(t), (1)) < fi(p(t), Z(1)). (35)

Also, notice that

Flp(1), (1) <a>z il —ZL“’J“(? + 30 B0~ Bdill)

t) 1+$k() P 1—|—$k()

= Ek pk( )
_ womt
—® ! + Z 1 + mk

k=1

n ne (t) (ne (8)+1)
< fworst (p(t)) + 2p/€ (t) 2 10g ( Ot ) (36)
=) | T+ (1) i (t)

21log (—”?:”)

<) £ p() + 2 oG

where (a) follows from the definition of f; in (17); (b) follows from (34); (c) follows since
we assume the “good" event G holds (hence, the inequality (23) is true); (d) follows since
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ng(t) <T, 6 > 6r forall t € {n+1,...,T}, and Zx(t) > 0 for all k € [1: n]. Since
p(t + 1) is defined in line 10 of Algorithm 1 as the projection of p(t) + 5:Vp f:(p(t), z(t))
onto the convex set A, ., we have that,

lp(t +1) = p*[1* <o) llp(t) + BeVp fi(p(t), (1) — p*||?

< lp(t) = p*|I* + B2 IVp fe(p(t), (1)) |* — 28:(p* — p(t)) " Vi fi(p(1), 2(t))
=) IP(t) = P*II* + B [IVp fe(p(t), 2(t)II* — 28:(fu(p", 2(2)) — fe(p(1), %(2)))
<() [Ip(t) = P*|* +nBEDF — 28, f*" + 26, f,(p(1), &(t)))

2log (T(TH))

N (f)

(37

n

<@ Ip(®) = p*1? +nB7D3 +48, 3 4 pi(®)
k=1

_ QﬁtfworSt’* + 2Btfworst (p(t))

where (a) follows since projection onto the convex set A,, . reduces the distance to any
point in the set, (b) follows from the subgradient equality for the linear function f(-, (¢)),
(c) follows from (33) and (35), and (d) follows from (36).

Hence, we have that forall t € {n + 1,...,T}, given that the “good" event G} is true

27 = 2 p(t)) — - p(0) ~ P + et + 1) -

n 2log (T(TH)) (38)
< nB;D2 +4 t _—
< nf, D ; pe(t) o
Notice that
Pr(t) =) E{lkea, tnP()} =@) E{lkea, @) |p@), H(t)} (39)

=(¢) E{1kea,on|H®)},

where (a) follows due to the sampling of the set .A; (¢) in line 7 of Algorithm 1, (b) follows
because the action set A (¢) is sampled independent of the history 7 (t) given p(t) (see line
7 of Algorithm 1), and (c) follows since p(t) is H(¢)-measurable.

Now we take the expectation (Conditioned on the event G;) of both sides of (38) which
gives,
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E {wa"““* =2 p(t) = lp(t) =7 + £ lp(t + 1)~ P

]

2log (%ﬁ)

n(t)

k=1

2log (T(T'H))

nk(t)

4 n
k=1

2log (L?TH))
N (t) (40)

4 n
= DL+ —F E{1 t
(a) "B DT + 2(eh! Z {Upea, @nH(t)}

2log <T(T+1))

4
= nBD:+ ——FELE 1
(v) NPt D P{G,) Z (k€A ()] )

‘H@

2log (T(TH))

n;(t)

nBtDT+P{4G} Eq Y H(t)

JijEAL(L)

=np D} +

4
PG| 2

JijEAL(L)

where (a) follows from (39) and (b) follows since ny(t) is H(t)-measurable. Hence, we
have that fort € {n+1,...,T}

—p*|?IGi}  E{llp(t +1) — p*|*|G:}
By By
2log (T<T+1>) (41)

n;(t)

E {waorst,* _ waorSt(p(t)”Gz} < ]E{Hp(t)

+rL/BfDT+]P){é} Z

Jij€AL(t)

Now, notice that

E{llp(t +1) = p*[*|GIP{G:} = E{|lp(t + 1) — p*|I*}

CE(Ip(t+1) - p*AIGSYPGE) > Efllp(t + 1) — p° P} - nP{GE}, )

where the last inequality follows from ||p(t + 1) — p*||? < n (since p(t + 1), p* € A, ).
Next, notice that
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n n

‘B
Pk < S pro =rc, (43)
1+ay pt

fworst,*
k=1
where the first equality follows from (27), the inequality follows from the definition of

C in (29) and the fact that z; > 0 for all k € [1: n], and the last equality follows since
p* € A, , (see (25)). Hence,

E {waorst,* _ 2fworst(p(t))‘G;:} S 2fworst,* S 27‘0, (44)

where the last inequality follows from (43). Notice that,

E{waorst,* _ 2fworst (p(t))}
= B2 — 25 (p(1)) |G PG} + B{2L M — 2 (1) |G HP{G )

<@ %E{Hp(t) - P|I*|Ge PG} — %E{Hp(t +1) = p*|PIGIP{Ge} + nB DFP{G:}

2log (ij ”)

0 + 2rCP{G¢}

+4E Z

jijEAL(L)

S0 éE{Hp(t) -p* - %E{Hp(t +1) =7} + %P{G?} +npDi 45)

2log (*T(f“)

- t)T +2rCP{G¢}

+4E Z

Jij€AL(L)

1 1
<@ EE{HP(U -p*|*} - EE{HP@ +1) —p*|I*} + nB D7

E 210g<T<§%1'+1>) c+ 2 ) ns
+4 ————2 5 +2(2rC+ — | ndy,
)3 (2 5 ) i

J:j€AL(t) n;(t)
where (a) follows from (41) and (44), (b) follows since E{X|Y }P{Y} < E{X} for a posi-

tive valued random variable X and (42), and (c) follows from (24). Now, we sum (45) for
te{n+1,...,T} to get
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T
E {2(T _ n)fworst,* _9 Z fworst(p(t))}

t=n+1

_E{lp(+1) PP} | & F_L] o Elllp(T+1) - prl?)
- Br+1 —t;a Be  Bi—a Edllp(t) =PI} Bri1

T T 2log (T(T+1)>
+nD%Z/3t+4ZIE Z T 7/

t=n+1 t=n+1 J:i€AL(t)

(a) ,Bn1+z [ :|+7LDTZﬁt

t=n-+2 t=n+1 (46)

21 T(T+1) T
L Z (2rC+ )nét

+Z (27~0+ )n(st

t=n+1

+4ZT:]E >

t=n+1 Jii€A(t)

210g(%>
7+nDTZ&+4ZE Z -\ T/

n;(t)
t=n+1 t=n+1 JijEAL() '

+Z (2rC’+ )nét

t=n+1

where (a) followssince 1/, — 1/8;—1 > Oforallt € {n+2,...,T}and||p(t)

—-p*<n
forallt € {n+1,...,T} (since p(t),p* € A, ;). Now, notice that

c (o [ fe o [

E SRCANNUIPA S , —

> EY D e > X o
t=n+1 JijEAL (L) k=1 t=n+1
k:ke A1(t>
n ng(T) n ng(T)

ey S <t

k=1 j=ni(n+1) k=1 j=1

<(a) 2E {Z an log (T(j(;:_l)>} S(b) 2\/2n10g (T(j(;:_l)> an(T)

T(T+1
<() 2\/2an10g <(5T+)>’

where (a) follows from Zl,f Vi <oy, (b)

Y orey \/nk \/n > ny nk(T),and(c) followssince >, ny(T) = r(T — 1) < rT.
Substituting above in (46), we have that

follows since
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E {2<T mfrese g 3 fwmwp(t))}

t=n-+1

T T(T + 1) T
< /57 +nDT Z Bt +8\/2nTTlog <5T) + Z (27"C'+ 5t> ndy

t=n-+1 t=n+1

(47

Fort € [1: n], define p(t) as pr(t) = 1[ke.a, (). This definition is consistent with the defi-
nition of p(t) fort € {n+1,...}, since A; (¢) is deterministic for ¢ € [1 : n] (see lines 1-4
of Algorithm 1). Hence,

E {2nfworst,* _ Qwaorst(p(t))} < anworst,* < 2nrC, (48)
t=1

where the last inequality follows from (43). Adding (47) and (48), and dividing by 27, we
have that

T
. n nrC ND% Zt_ 1 B
E {fworst,* E fworst } == _ Let=ngl TR
T

=28,T T 2T

(49)
2nrlog ( I+ )

t=n+1

Using the definition of R¥°"*(T") defined in (7) in the above, we are done.

(b) To prove the (b), consider d§; =O(1/t) and pJB;=0O(1/Vt) for all
te{n+1,n+2,...} Weanalyze each term in the right hand side of the bound obtained
| | | . nrtos (2EE0)
in part-(a). Notice that 57"+ is o(1/VT), o= is ©(1/T), and \/ ————"—= is
O(y/log(T)/T). We will analyze the remaining two terms separately. For simplicity, we

will use §; = 1/t and B; = 1/+/t. First,

nD2. ZtT:nH Bt 5 > L log(T)
P s B2 <C+2 2log (T (T+1))) t_ZH\/E_(,,)@( S >

where (a) follows from the definition of D7 in (28) and for (b) we have used

S 1/VE < 2V Next,

T
1 2rnC n? 1
_ E 20 5:* E — :a® 9
tn+1<r i )nt T,z ( ¢ +\/Z> @ (\/T>

t=n+1

where for (a) we have used 22:1 1/k < 22:1 1/vk < 2V/1. Combining the terms, we
are done. [

Birkhauser



Dynamic Games and Applications

3 Simulation Results

In this section we present our simulation results. In Fig. 2, we simulate the performance
of our algorithm for n =6,m =5, FE = [3,1,1,1,0.5,0.1], and r € {1,2,3}. For each
value of , we run Algorithm 1 for 2 x 109 iterations. We first plot 1 30| f¥ors(p(7))
vs ¢, after which we plot the entries of p(t) vs f, where ¢ is the iteration number. In the
plots, we also plot the optimal objective value f¥°'%* and the optimal p* for reference. In
Fig. 3, we repeat the above with parameters n = 6,m =5, E = [6.1,1,1,1,0.5,0.1] and
r e {1,2,3}.

Notice that in both cases, we use E sorted in nonincreasing order. Comparing the case
r = 1 for the two values of E it can be seen that when E = [6.1,1,1,1,0.5,0.1], player 1
chooses resource 1 with probability 1 while when E = [3,1,1,1,0.5,0.1], player 1 chooses
several resources with nonzero probability. This is because when E = [6.1,1,1,1,0.5,0.1],
the mean reward of the first resource is higher than five times the mean reward of the second
resource. Hence, even if all the other players choose resource 1, player 1 will not benefit by
choosing a different resource. From Fig. 2-Bottom-Left and Fig. 3-Bottom-Left, it can be
seen that the online algorithm learns this behavior. However, when r > 1, player 1 chooses
resource 1 with probability 1 for both values of E. In all cases, it can be seen that the worst-
case expected utility of the online algorithm converges to the optimal value.

Another interesting observation is the slower convergence of the algorithm for r = 1 with
E =16.1,1,1,1,0.5,0.1]. This may be due to the fact that this is the only case where the
optimal solution p* is an extreme point of A, ;- (p* chooses all resources except resource 1
with zero probability). In particular, using p(t) close to p* in the initial phases of the algo-
rithm reduces exploration required to learn the F; values.

4 Conclusions

In this paper, we considered the problem of worst-case time-average expected reward maxi-
mization for the first player in online multi-player resource-sharing games with bandit feed-
back. We considered a fair reward allocation model, where in each time slot, the reward of a
resource is shared equally among the players selecting it. We provided an upper confidence
bound algorithm that gets within O(log (T')/v/T) of optimality within a finite time horizon
of T time slots. Extending this work beyond the fair reward allocation model to general
congestion games in the online setting is future work.

Appendix A: Madow’s Sampling Technique
In this section, we present the Madow’s sampling technique (Algorithm 2). The algorithm

takes as an input a vector p € A,, ,» and outputs a set A C [1 : n] such that |A| = r, and
E{lgeca} = pi forall k € [1 : n]. See [1] for the proof of the correctness of the algorithm.
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1 Define ITy = 0, and I =IIx_1 + px Yk € [1: n].

2 Sample U ~ Uniform(0, 1).

3 Define the set Sy = &, where @ denotes the empty set.

4 for each k€ {0,1,...,r — 1} do

5 Find the unique ¢ € [1: n] such that II,_; < U + k < II;.
6 Define Sg+1 = S U {i}.

7 end

8 Output A =S,

Algorithm 2 Madow’s sampling technique

Appendix B: Proof of Theorem 2

This section finds p* for the case m =3,r=1 where n is a positive inte-

ger and E =[E;,...,E,] is known. Recall that we use A, =4, 1 Define

p* € arg minpeAn fworst(p)’ fworSt(p) = mingec s f(p, ) and f p, ZL’) k 1 13_5’; .

Recall that we assumed without loss of generality that E is sorted as Ej, > Ej,4; for all
ke {1,2,...,n— 1}. Notice that from Lemma | we have,

wors S peEr — 201 (p) if 'y (p) > 3l2(p)
") = { Z: B — 5T1(p) — 3T2(p)  if Ty (p) < 3T2(p) (A

wherel'; (p),['2(p)arethelargestandthesecondlargestelementsoftheset{pr Er; 1 < k < n},
respectively. Observe that if 'y (p) = 3T2(p), then 2Ty (p) = 1T'1(p) + 3T1(p). In par-
ticular, the function f"°™*(p) is continuous and so it has a maximizer p* over the compact
set A,,. By considering the case 'y (p*) > 30'2(p*) and a particular index i € {1,...,n}
achieves p!E; =I'1(p*), and the case I'1(p*) < 3I'2(p*) and particular indices ¢ # j
achieve p; E; = I'1(p”), pj E; = I'a(p”), we notice that p* is the solution of the problem
with the maximal optimal objective out of the n? linear programs,

n
(P1-4) : max Z prE 2p1E1
s.t. :6 Ay, (A2)
ZE1Z pkEle<k:<n
and
P 5 Ej
(P1-(i,4)) :  max Z prBy — B - Bz
(A3)

s.t. peAn, piE; <3p7E piEi > p;Ej,
p]E >pkE;€V1<k’<n ki?é

where i,j € [1: n]and i # j. To solve (P1-i), and (P1-(4, §)), it shall be useful to re-index
to associate i with 1, and (7, j) with 1 and 2. Hence, we define the two problems.
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n
(L1 max filp) = 32 pufi — 24
k=1

s.t. pEA,, (A4)
1y > 3pps1 Frpr Ve e {1,...,n— 1},
and
= F, F.
(P1-2): max fa(p) = 3 pulh — Byt — B2
(AS)

k=1
st.  pE Ay, p1Fy < 3palh, prFy > palh,
P2l > ppFy V3 < k <n,

where for (P1-1), without loss of generality F' € R"™ is assumed to a positive vector such that
Fj, > Fyyq fork € [2: n — 1], and for (P1-2), F' € R™ is assumed to a positive vector such
that Fy, > Fy41 fork € [3: n — 1]. It should be noted that the F}, values are just the E}, val-
ues under more convenient indexing. Solving the above two problems immediately solves
each of the previously defined n? problems. Define the two sequences (U;; 1 < i < n), and
(Vi;2<i<n)by,

1

Uij= ————
T3 i1 (A6)
i + Zk:2 Fr
and,
1—1
Vi= ——.
: 1 (AT)
22:1 Fr
These two sequences are useful when constructing the solutions to (P1-1) and (P1-2).
We first state a lemma that is useful for the proof.
Lemma4 Consider constrained optimization problem
max

s.t. zi(®) >0 forie{l,2,...,k},

where z; : R" — Rfori € {0,1,2,...,k},and Y C R". Consider the unconstrained prob-
lem maxgzecy zo(x) + Zle wizi(x) for some p > 0. Let * be a solution to the uncon-
strained problem. Assume x* satisfies for all ¢ € {1,2,...,k},

(a) zi(x*) > 0 (That is * is feasible for the constrained problem)
(b) p; > 0implies z;(z*) = 0.

Then «* is optimal for the constrained problem.

Proof The proof of the lemma is immediate and omitted for brevity.

Birkhauser



Dynamic Games and Applications

B e=4 Sy ‘g =+
DIPPIA ‘T = + YT 7 sA . d Jo spuouodwiod pue (7)d Jo syuouodwo) WoRod 7 SA ,giomd PU ((4)€) 4s10mf TMMW m oL *[T°0°G°0°‘T ‘T ‘T ‘T'9] = & olreudds ¢ 614

) Birkhauser

931 931 931
00Z SLT  0ST SZT 00T SLO 0SO SZO 000 00Z SLT  0ST SZT 00T SLO 050 SZ0 000 00Z SLT  0ST SZT 00T SLO0 0S0 SZ0 000
i : zo- : i : i L " : ; L zo- zo-
4 foo 00 00
2 j
Fzo Lzo zo
} od —
Lvo Lo sd — vo
[ —
B [
+oo oo e 90
o — M — d
sd — Lgo sd — L 80 80
L[/ J— | g
d — . d— g .
[ p— ot ud ot o1
W — d —
z1 z1 zT
931 931 931
00Z ST 0§T SZT 00T SLO 050 SZ0 000 00Z SLT 0ST SZT 00T SLO 0SS0 SZ0 000 00Z ST 0ST SZT 00T S0 0S0 SZ0 000
" . " L " . . " " f ; : : ) : f r T i i : ) ; d : . 70
wyiuobly pueg —— 80 wyyuobly ypueg —— wyuob)y ypueg ——
annalqo jewndo — anpalqo ewndo — [90 | aandalqo jewndo —
Lo
s 8o
too
Lzt Lo
- L 21 Leo
9t et Fot
Lot '\\\K
— 8T J Lzt




Dynamic Games and Applications

B.0.1 Solving (P1-1)

Consider the problem (P1-1):

(P1-1) : max fi(p)
st pE A, (A9)
p1F12 3pk+1Fk+1 vk € {1727 sy — 1}7

where the function f; is defined by

" 2p1 F
. 151
filp) =) b = =5 (A10)
k=1
Let us define
u=arg max U, (A1D)

where the sequence (U;; 1 < ¢ < n) is defined in (A6) and arg max returns the least index
in the case of ties. We establish that the solution to (P1-1) is p*, where

T~ ifk=1
Pk = e if2<k<u (A12)
T -
0 otherwise,
with optimal objective value U,,.
Consider the vector i* € R"~! defined by
- 1 D S 1< b <qy—
-3 <1 P B4y F> flsk<u-1 (A13)
0 otherwise,

where u is defined in (Al1). In the subsequent analysis, we establish that i* defined
above is a valid Lagrange multiplier (i} > 0 for all k € [1:n — 1]) and (p*, ") satisfy
the conditions of Lemma 4, where for k € [1:n — 1], fi} corresponds to the constraint
p1F1 > 3pgpr1Frr1 of (P1-1). This establishes that p* solves (P1-1). It can be easily
checked by substitution that the objective value of (P1-1) for p* is U,. Hence, the steps of
the proof can be summarized as:

1. gy >0forallke[l:n—1].

2. p” is feasible for (P1-1). In particular, we have that p* € A,, and p;Fy > 3Pk 1 P
forke{l,...,n—1}L

3. P” solves the unconstrained problem with Lagrange multiplier vector i* (See Lemma 4
for the construction of the unconstrained problem).
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4. Forke{l,...,n—1}, if > 0 implies the corresponding constraint of (P1-1) is met
with equality.

Notice that step 2 above can be checked by direct substitution from (A12). Also, for step
4, notice that from the definition of fi* in (A13), i > 0 implies that k € {1,...,u — 1}.
By substitution from the definition of p* in (A12), it follows that p} F = 3p;, +1Fk+1 for
ke {1,...,u— 1}. Hence, we are only required to establish steps 1 and 3. We establish
step 1 along with two other results that will be useful for step 3 in Lemma 5 below, after
which we establish step 3 in Lemma 6.

Lemma 5 Consider the ii* defined in (A13). We have that

(a) iy, > O0forall ksuchthatl <k <n -1
(b) Fr(1-3a;_,) = i+i‘:2 T for2<k<u and

F1

- “12*): TR
A5+ X5 ) = gt SE
©) Fkﬁﬁforu—i—l <k<

1
1 j=2 F;
Proof Notice that since u = arg maxi<;<n U;, we have that

U, > Uj for all j € [1:n]. (A14)

(a) Notice that when k£ > u — 1, by definition of i* in (A13), we have that i} = 0. Now
suppose k < u — 1. Hence, we can assume u > 2. From the definition of 4* in (A13),
we are required to prove Fji; > ————— for all ke {1,2,...,u—1}. It is

FL T Laj=2 Fy
enough to prove the above for k = u — 1, since Fy, > Fj41 for k > 2. Notice that
from (A14) we have that U, > U,_; (recall that uw > 2). Substituting from (A6),

U, > U, translates to — i — > u—l . Simplifying the above gives
i=2 F; L j=2 Fj

Fy

F, > —%—— as desired.
ol TS S
(b) Substituting from the definition of i} in (A13) and simplifying yields the result.

(c) Ifu = n,there is nothing to prove. Hence, we can assume v < n. Notice that it is enough
to prove the result for £ = u + 1, since Fj, > Fj,41 for k > 2. From (A14), we have
that U,, > U, 41 (recall that v < n). Substituting from (A6), U,, > U, +; translates to

. £ > utl . Simplifying the above we have F, 1| < —%—
D e S DA R

as desired.[]

Lemma 6 The vector p* defined in (A12) solves unconstrained problem with Lagrange
multiplier vector fi* defined in (A13) (See Lemma 4 for the construction of the uncon-
strained problem). In particular, p* solves
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n—1

max  f1(p) + > fAp(p1F1 — 3per1Frin) (A15)
k=1
st peEA,,

where the function f7 is defined in (A10).

Proof Noticing from the definition of " in (A13) that i} = 0 for £ > u, and using the
definition of function f; in (A10), the objective of the above unconstrained problem simpli-
fies as

n—1

B 1 u—1 . u .,
f1(P) + ) iz (prFy = 3pe i1 Fisr) = piFy <3 + Zu) + > peFr(1 - 3ii_y)
1 =1 k=2

+ Z kak:ZPiC+ Z PrFe,
i=1

k=u+1 k=u+1

° T

where C = W and the last equality follows from Lemma 5-(b). Also, notice that

Fp
from Lemma 5-(c), we have that C > F}, for all k € {u + 1,...,n}. Hence, the optimal
solution to the above defined unconstrained problem is any p € A,, such that p; = 0 for
all k € {u+1,...,n}. In particular, p* given in (A12) is a solution to the unconstrained
problem. [

i=2 Fy

B.0.2 Solving (P1-2)
Consider the problem (P1-2).

(P1-2) : max fa(p)
st.  p €Ay, piF1 < 3pakh, piF > paky (A16)
p2fo> ppk V3 <k <mn,

where the function f5 is defined as

piFL pafh
2 2

fa(p) = piFy —

k=1

(A17)

Let us define u = argmaxs<i<, U; and v = argmaxs<;<n, V; where the sequences
(Ui;1<i<n), and (V;;2<1i<mn) are defined in (A6), and (A7), respectively, and
arg max returns the least index in the case of ties. In this case, to define u, we only consider
the indices of the (U;; 1 < ¢ < n) sequence starting from 2 in contrast to the definition of u
in the solution to (P1-1). The solution of (P1-2) can be described under two cases.

Case 1: V,, > U, : The solution to (P1-2) in this case is p* where
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1
o —E if1<k<w
{ OZ % (A18)

otherwise,

with optimal objective value V,.
Case 2: V,, < U,: The solution to (P1-2) in this case is p* where

‘w

—E— ifk=1

Ph= b if2<k<u (A19)
FH) T
0 otherwise.

with optimal objective value U,,.
The proof is similar to the Solution of (P1-1). We omit the proof for brevity. For the
complete proof, refer the technical report [52].

B.0.3 Finding p*

Finally, we are ready to combine the solutions of (P1-1) and (P1-2) to find
p* € argmaxpen, SV (p). Notice that since we solved (P1-1) and (P1-2), we have
solved all of the n? problems (P1-i), and (P1-(i,j)) for i,j € [1 : n] such that i # j
defined in (A2) and (A3), respectively. Hence, we can find p* by solving all the above
problems and finding the one that gives the highest optimal objective. But, it turns out
that it is, in fact, enough to solve (P1-1), and (P1-(1,2)). To prove this, consider arbi-
trary (i, j) such that 1 < 4,5 <n such that ¢ # j. Define, D € R™ to be the vector
obtained by permuting the entries of E such that D1 = E;, Dy = E;, and Dy > Dy, for
k € [3: n — 1]. Notice that due to the solution of (P1-2), the optimal value of (P1-(z, j)) is

a—1

. . b
given by v* = max D T
k=1 Dp D71+Zk,:2 Dy

2 <a,b <n p.Notice that,

ma { a1 b a,b € [2 n]}>fy* (A20)
X a 1 ) b ) : — )

2k-1 By AR E%
where  the  inequality  follows  since Y,z <> i, p5-, and
=+ S =<5+ S 3 for all a,b € [2: n]. This follows since Ej, > Fjyi1
for all k£ € [1:n — 1]. But notice that the left-hand side of (A20) is the optimal value of
(P1-(1, 2)). Hence, the optimal value of (P1-(1, 2)) is at least as that of (P1-(i, j)). Hence, it

is enough to solve (P1-(1, 2)). With similar reasoning, we can establish that solving (P1-1)
suffices. Considering the solutions (P1-(1, 2)) and (P1-1), we have the result.
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Appendix C

Given F € R, and p € A,, ., we focus on finding * € arg minge 7 22:1 f_’;ii This

is an optimization over a nonconvex discrete set € J. However, it has a classical sepa-
rable structure that is well studied in the literature and can be solved exactly using either a
greedy O(n + mrlog(n)) incremental algorithm or an improved O(n log(mr)) algorithm.
For completeness, we summarize an O(nmr) algorithm in Algorithm 3. For improved algo-
rithms, refer to the work of [53].

1 Initialize = [0,0,...,0] € N™.
2 for each iteration k € [1: (m — 1)r] do

3 Increase x; by 1 where i € argmin je1. {fj_i’i — %}
rp<m—1

4 end
5 Output x.

Algorithm 3 Algorithm for Appendix C

Appendix D: Algorithm to Project onto A, ;.

1 Define for all 1 < a < b < n,

b
Hap = 2= zji a(: la - 1),Aa,b =1{yp > prap > ya — 1}
Bop=1{(b=mn)or [(b<n)and (yp4+1 < fap)]}
Cop=1{(a=1)or [(a>1) and (yo—1 — 1 > pap)|}
g(a,b) =min{c:c>b,By . =1}, h(a,b) = max{c:c<a,Ccp = 1}.
2 Initialize (a1,b1) = (r,7).
3 for each t € {1,2,...} do
4 Set (a+1,bi+1) = (h(as, g(ar, br)), g(at, by))-

5 if (at+17bt+1) = (at7b,,) then

6 ‘ Output € R™, where z; = H[o,l](yz‘ — Hayb,)-
7 end

8 end

Algorithm 4 Projecting y sorted in the nonincreasing order onto A, -

Analysis of Algorithm 4: Fix y € R. Notice that the problem of projection of y € R"
onto A, , is,

. 1 _ 2
min 4z -yl a2
s.t yeh,,

We assume, without loss of generality, that y is sorted in non-increasing order (Notice that if
y is not sorted, we could sort y, perform the projection, and rearrange the elements accord-
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ing to the original order. This works since the set A,, , is closed under the permutation of
entries of its element vectors).

Now consider L(z, y1) for 1 € R given by L(z, 1) = 1|z — y||* + (Z;—;l zj — r),

and the problem,

(P6-p)  min L(z, p)

st zel0,1" (A22)

for a fixed p € R. Let us assume the existence of a u* € R such that the solution z* of
(P6-p*) defined in (A22) satisfies, Z?:1 z; = r. Notice that z* is optimal for the original
problem since for any z € A, .,

1 . . 1,
§|\Z*y||2:L(z,u ) > L(z", ):g\lz -yl

Hence, we focus on finding such a 1* and the corresponding z*. First, we focus on solving
(P6-p) defined in (A22) for a fixed o € R. Notice that (P6-u) is a separable quadratic pro-
gram in the entries of z. Hence, the optimal z; can be obtained by projecting the unconstrained
optimal value for each entry of z onto [0, 1]. Hence, the solution is z; = IIjg 17(y; — p) for
all j € [1 : n], where ITj ;] denotes the projection operator onto [0, 1].

Now we need to find 1* such that the optimal solution z* of (P6-u*) defined in (A22)
satisfies 2* € A,, .. Hence, we require 1* € R such that

D M y(y; —p) =r. (A23)
j=1

For € R, define the set K, = {i;1 <4 <n,pu+ 1> y; > p}. Notice that for each 4 € R,
IC,, is either the empty set or a set of the form [a : b] where 1 < a < b < n.

We have two possibilities if IC,,« is the empty set. The first is * > y; forall j € [1 : n]
in which case we have Z?:l Ijo,1)(y; — p*) = 0 which does not agree with (A23). The
second is p* < y; — 1 forall j € [1 : n] in which case we have Z;;l o,y (yj — p*) = n.
This is only possible when n = r, in which case the only solution to the problem is the
trivial solution of player 1 choosing all the resources.

Hence, we will focus on the case of non-empty K,-. Let KC,» = [a* : b*] where
1 < a* < b* < n. This is equivalent to p* satisfying the conditions,

Yor > W > Yoo — 1
(b* =n) or [(b* <n) and (ypr41 < p*)] (A24)
(a*=1)or [(a* > 1) and (yar—1 — 1> p")]

Define for each a, b € [1 : n| the real number (i, ;, as

b
Zj:a Yj — (T_a_'_]-) (A25)
b—a+1

Ha,b =
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Now, notice that (A23) translates to,
W= Hax b s (A26)

where KC,- = [a* : b*]. Combining (A26) and (A24), we have that if we can find
a*,b* (1 < a* <b* < n)such that

Yor = Ha* b = Yar — 1
(0" =n) or [(b* <n) and (Yp=+1 < fa* b~ )]
(a*=1)or [(a* > 1) and (Yar—1 — 1 > g~ p+)]

are all satisfied, then we are guaranteed that the solution z* of (P6-/1,~ 3+ ) defined in (A22)
satisfies z* € A,, ,.. For each a, b € [1 : n], we will denote the three conditions,

-Aa,b = 1{1/1; > Mab = Ya — 1}
Bap =1{(b=mn) or [(b <n) and (Yp41 < Hap)]}
Cap=1(a=1)or [(a>1) and (ya—1 — 1 > pap)]}

Hence, our goal is to find (a*, b*) such that Ay« p» = 1, B+ p= = 1, and Cox p» = 1.

An easy way to find a*, b* is to go through all a, b € [1 : n] and check whether the above
three conditions are satisfied. This approach has to go through n? pairs (a, b). We will pro-
vide an alternative approach that is efficient and goes through at most n pairs (a, b). With
this approach, we can also establish the existence of a*, b* € [1 : n| satisfying Ay = = 1,
Ba*,b* = 1, and Ca*,b* =1.

Given a,b € [1:n], define g(a, b) as the minimum integer in [b : n] such that
Ba,g(a,p) = 1 (Notice that B, , = 1, so such an integer always exists). Similarly, define
h(a, b) as the maximum integer in [1 : a] such that Cy(, ), = 1 (Notice that C1, = 1, so
such an integer always exists).

We have the following claim.

Claim1: If A, = 1 then we have that A, g(a,p) = 1 and Ap(a,p),p = 1

Proof We only prove that A, 4(4,5) = 1. The other part follows from a similar argument.
First, notice that if g(a, b) = b, we are done. Hence, we will assume g(a,b) > b. We prove
a stronger statement. We prove that A, . = 1 for all ¢ € [b: g(a, b)]. We use induction for
the proof. Notice that the base case ¢ = b is true. Now assume that A, . =1 for some
cée[b:g(a,b) — 1. We prove that A, 1 = 1. Since ¢ € [b : g(a,b) — 1], from the defini-
tion of function g, we have that B, . = 0. Also since ¢ < g(a,b) — 1, we have that ¢ < n.
Hence, using the definition of B, ., we have that y.41 > 4. Hence,

 paelc—a+1) Fyerr  Yeyr(c—a+1) + yeqr
Ha,c+1 = S
c—a+2 c—a+2

= Yc+1,

where for the first equation we have used the definition of g 1 from (A25). Also,
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M _ ,ua,c(c —a+ 1) + Ye+1 =1 + Yet+1 — ///a,,c
a-etl c—a+2 e c—a+2

Z(a) Ha,c Z(b) Ya — 17

where (a) follows since ye4+1 > fiq, and (b) follows since A, . is true by assumption. From
the above two inequalities, we have that A, .1 = 1 as desired. OJ

Now consider the following sequence S of tuples S = {(a1,b1), (az,b2), ...}, where
(61,17 bl) = (7’, 7”), and (ai, bz) = (h(ai_l, g(ai_l, bi—l))7 g(ai_l, bi—l)) for each i > 1. We
have the following claim regarding S.

Claim 2: We have that A, », = 1 and Cy, 5, = 1 forall i € {2,3,...}.

Proof The factthatC,, ,, = 1foralli € {2,3,...} follows from the definition of a;, b; and
the function h, since (ai,bi) = (h(ai_l,g(ai_l, bi_l)),g(ai_l,bi_l)) for all 2 > 1. For
the other part we use induction. It can be easily checked that A,, 5, = A, = 1. Assume
Aa;p; = 1 for some i > 1. Hence, we have from claim 1 that A,, 4(4,.5,) = 1. Applying
claim 1 again we have that A, (a, g(a.,b:)),g(as,6:) = 1 Which completes the induction. [J

Now notice that the sequence S satisfies,

aiv1 < ag,bipr 2 b; (A27)

forall¢ € {1,2,...}. This is because b;+1 = g(a;, b;) > b; by definition of function g and
ai+1 = h(ai, g(a;, b;)) < a; by definition of function 4. Additionally, from the definition of
sequence S, it can be easily seen that if (a;41,b;+1) = (a4, b;) for some ¢ > 1, then we have
(a;,b;) = (ai, b;) forall j > i. Combining the above property with (A27), we have that the
sequence S is eventually constant. In particular, there exists i > 1 such that (a;, b;) = (@, b)
for all j > 4. It is also not difficult to see that the minimum such i satisfies ¢ < n. To see
this, notice that,

1—1
n=1>b—a;i=Y [biy1—bj+a;—aj]>(i—1), (A28)

=1

where the last inequality follows since for each j < i, we should have a;y; < a;
and b;41 > b;, and at least one of the two inequalities is strict (if not we will have
(aj+1,bj41) = (aj,b;) which will contradict the minimality of 7).

From claim 2 we have that A; ; =1 and C; ; = 1. We also prove that B, ; = 1. To
prove this, pick any j > i. We have that (a;11, bj41) = (h(a;, g(a;,b;)), g(a;,b;)), which
reduces to (a,b) = (h(a, g(a,b)), g(a,b)). Hence, we have b = g(a,b). Notice that since
from the definition of g, we have that B; ,; 5y = 1 we have that B; ; = 1 as desired. Hence,
(a*,b*) exists and is equal to (a, b).

To find (a,b) we enumerate the sequence S. As established by (A28), the sequence
becomes constant before # steps. Hence, this process is more efficient compared to the naive
scheme which evaluates p,,, values for all a,b € [1 : n].

Note: In Algorithm 4 although we have defined yq 1, g(a, b), h(a, b), Aq b, Bap, and Cq p
for all a,b € [1 : n], we only require computing above for (a, b) tuples in S.
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